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Ch. 3: Forward and Inverse Kinematics 
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Updates 

• Document clarifying the Denavit-Hartenberg convention is posted 
• Labs and section times announced 

– If you haven’t already, please forward your availability to Shelten & Ben 
• Matlab review session Tuesday 2/13, 6:00 MD 221 
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Recap: The Denavit-Hartenberg (DH) Convention 

• Representing each individual homogeneous transformation as the 
product of four basic transformations: 
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Recap: the physical basis for DH parameters 

•  ai: link length, distance between the o0 and o1 (projected along x1) 
•  αi: link twist, angle between z0 and z1 (measured around x1) 
•  di: link offset, distance between o0 and o1 (projected along z0) 
•  θi: joint angle, angle between x0 and x1 (measured around z0) 

 
 

Presenter
Presentation Notes
Note that only theta and d can be variable
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General procedure for determining forward kinematics 

1. Label joint axes as z0, …, zn-1 (axis zi is joint axis for joint i+1) 
2. Choose base frame: set o0 on z0 and choose x0 and y0 using right-

handed convention 
3. For i=1:n-1, 

i. Place oi where the normal to zi and zi-1 intersects zi.  If zi intersects zi-1, put 
oi at intersection.  If zi and zi-1 are parallel, place oi along zi such that di=0 

ii.  xi is the common normal through oi, or normal to the plane formed by zi-1 
and zi if the two intersect 

iii. Determine yi using right-handed convention 
4. Place the tool frame: set zn parallel to zn-1 
5. For i=1:n, fill in the table of DH parameters 
6. Form homogeneous transformation matrices, Ai 
7. Create Tn

0 that gives the position and orientation of the end-effector in 
the inertial frame 
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Example 2: three-link cylindrical robot 

• 3DOF: need to assign four coordinate frames 
1. Choose z0 axis (axis of rotation for joint 1, base frame) 
2. Choose z1 axis (axis of translation for joint 2) 
3. Choose z2 axis (axis of translation for joint 3) 
4. Choose z3 axis (tool frame) 

• This is again arbitrary for this case since we have described no wrist/gripper 
• Instead, define z3 as parallel to z2 

Presenter
Presentation Notes
Could have put o0 anywhere along z0
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Example 2: three-link cylindrical robot 

• Now define DH parameters 
– First, define the constant parameters ai, αi 
– Second, define the variable parameters θi, di 

 
 
 
 

 

link ai αi di θi 

1 0 0 d1 θ1 

2 0 -90 d2 0 

3 0 0 d3 0 
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Example 3: spherical wrist 

• 3DOF: need to assign four coordinate frames 
– yaw, pitch, roll (θ4, θ5, θ6) all intersecting at one point o (wrist center) 
1. Choose z3 axis (axis of rotation for joint 4) 
2. Choose z4 axis (axis of rotation for joint 5) 
3. Choose z5 axis (axis of rotation for joint 6) 
4. Choose tool frame: 

• z6 (a) is collinear with z5 

• y6 (s) is in the direction the gripper closes 
• x6 (n) is chosen with a right-handed convention 
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Example 3: spherical wrist 

link ai αi di θi 

4 0 -90 0 θ4 

5 0 90 0 θ5 

6 0 0 d6 θ6 

• Now define DH parameters 
– First, define the constant parameters ai, αi 
– Second, define the variable parameters θi, di 
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Example 4: cylindrical robot with spherical wrist 

• 6DOF: need to assign seven coordinate frames 
– But we already did this for the previous two examples, so we can fill in the 

table of DH parameters: 
 

link ai αi di θi 

1 0 0 d1 θ1 

2 0 -90 d2 0 

3 0 0 d3 0 

4 0 -90 0 θ4 

5 0 90 0 θ5 

6 0 0 d6 θ6 

o3, o4, o5 are all at 
the same point oc  
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Example 4: cylindrical robot with spherical wrist 

• Note that z3 (axis for joint 4) is collinear with z2 (axis for joint 3), thus we 
can make the following combination: 
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Example 5: the Stanford manipulator 

• 6DOF: need to assign seven coordinate frames: 
1. Choose z0 axis (axis of rotation for joint 1, base frame) 
2. Choose z1-z5 axes (axes of rotation/translation for joints 2-6) 
3. Choose xi axes 
4. Choose tool frame 
5. Fill in table of DH parameters: 

link ai αi di θi 

1 0 -90 0 θ1 

2 0 90 d2 θ2 

3 0 0 d3 0 

4 0 -90 0 θ4 

5 0 90 0 θ5 

6 0 0 d6 θ6 

Presenter
Presentation Notes
One thing all these coordinate frame assignments are assuming is a reference ‘rest’ state of the arm
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Example 5: the Stanford manipulator 

• Now determine the individual homogeneous transformations: 
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Example 5: the Stanford manipulator 

• Finally, combine to give the complete description of the forward 
kinematics: 
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Example 6: the SCARA manipulator 

• 4DOF: need to assign five coordinate frames: 
1. Choose z0 axis (axis of rotation for joint 1, base frame) 
2. Choose z1-z3 axes (axes of rotation/translation for joints 2-4) 
3. Choose xi axes 
4. Choose tool frame 
5. Fill in table of DH parameters: 

link ai αi di θi 

1 a1 0 0 θ1 

2 a2 180 0 θ2 

3 0 0 d3 0 

4 0 0 d4 θ4 

Presenter
Presentation Notes
RRP with a 1DOF wrist
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Example 6: the SCARA manipulator 

• Now determine the individual homogeneous transformations: 
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Forward kinematics of parallel manipulators 

• Parallel manipulator: two or more series chains connect the end-
effector to the base (closed-chain) 

• # of DOF for a parallel manipulator determined by taking the total DOFs 
for all links and subtracting the number of constraints imposed by the 
closed-chain configuration 

• Gruebler’s formula (3D): 
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number of joints 
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Forward kinematics of parallel manipulators 

• Gruebler’s formula (2D): 
 

• Example (2D): 
– Planar four-bar, nL = 3, nj = 4, fi = 1(for all joints) 

• 3(3-4)+4 = 1DOF 
– Forward kinematics: 
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Presenter
Presentation Notes
Forward kinematics for general closed-chain manipulators is not difficult, but cumbersome
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Inverse Kinematics 

• Find the values of joint parameters that will put the tool frame at a 
desired position and orientation (within the workspace) 

– Given H: 
 
 

– Find all solutions to: 
 

– Noting that: 
 

– This gives 12 (nontrivial) equations with n unknowns 
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• For a given H: 
 
 
 
 

• Find θ1, θ2, d3, θ4, θ5, θ6: 
 
 
 
 
 
 

• One solution: θ1 = π/2, θ2 = π/2, d3 = 0.5, θ4 = π/2, θ5 = 0, θ6 = π/2 
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Inverse Kinematics 

• The previous example shows how difficult it would be to obtain a 
closed-form solution to the 12 equations 

• Instead, we develop systematic methods based upon the manipulator 
configuration 

• For the forward kinematics there is always a unique solution 
– Potentially complex nonlinear functions 

• The inverse kinematics may or may not have a solution 
– Solutions may or may not be unique 
– Solutions may violate joint limits 

• Closed-form solutions are ideal! 
 

Presenter
Presentation Notes
Closed-form solutions are necessary for real-time applications and for choosing amongst multiple solutions
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Overview: kinematic decoupling 

• Appropriate for systems that have an arm a wrist 
– Such that the wrist joint axes are aligned at a point 

• For such systems, we can split the inverse kinematics problem into two 
parts: 

1. Inverse position kinematics: position of the wrist center 
2. Inverse orientation kinematics: orientation of the wrist 

• First, assume 6DOF, the last three intersecting at oc 
 
 
 
 

• Use the position of the wrist center to determine the first three joint 
angles… 

( )
( ) oqqo

RqqR

=

=

61
0
6

61
0
6

,...,
,...,

Presenter
Presentation Notes
There is a reason that manipulators have commonly evolved to be kinematically decoupled: simpler inverse kinematics
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Overview: kinematic decoupling 

• Now, origin of tool frame, o6, is a distance d6 translated along z5 (since 
z5 and z6 are collinear) 

– Thus, the third column of R is the direction of z6 (w/ respect to the base 
frame) and we can write: 
 
 

– Rearranging: 
 
 

– Calling o = [ox oy oz]T, oc
0 = [xc yc zc]T 
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Overview: kinematic decoupling 

• Since [xc yc zc]T are determined from the first three joint angles, our 
forward kinematics expression now allows us to solve for the first three 
joint angles decoupled from the final three. 

– Thus we now have R3
0 

– Note that: 
 

– To solve for the final three joint angles: 
 
 

– Since the last three joints for a 
spherical wrist, we can use a set of 
Euler angles to solve for them 
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Inverse position 

• Now that we have [xc yc zc]T we need to find q1, q2, q3  
– Solve for qi by projecting onto the xi-1, yi-1 plane, solve trig problem 
– Two examples: elbow (RRR) and spherical (RRP) manipulators 
– For example, for an elbow manipulator, to solve for θ1, project the arm onto 

the x0, y0 plane  
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Background: two argument atan 

• We use atan2(·) instead of atan(·) to account for the full range of 
angular solutions 

– Called ‘four-quadrant’ arctan  
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Example: RRR manipulator 

1. To solve for θ1, project the arm onto the x0, y0 plane  
 
 
 
 
 
 
 
 
 
 

– Can also have:  
• This will of course change the solutions for θ2 and θ3 

( )cc yx ,21 atan=θ

( )cc yx ,21 atan+= πθ

Presenter
Presentation Notes
Two argument arctan function that considers the sign of both x and y
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• If there is an offset, then we will 
have two solutions for θ1: left arm 
and right arm 

– However, wrist centers cannot 
intersect z0 

• If xc=yc=0, θ1 is undefined 
– i.e. any value of θ1 will work 

 

Caveats: singular configurations, offsets 

Presenter
Presentation Notes
This will occur if either d2 or d3 ≠ 0
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• Left arm: • Right arm: 

Left arm and right arm solutions 
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Presenter
Presentation Notes
Doesn’t matter if d2 or d3 ~=0
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• Therefore there are in general two solutions for θ1 

• Finding θ2 and θ3 is identical to the planar two-link manipulator we have 
seen previously: 
 
 
 
 
 
 

• Therefore we can find two solutions for θ3: 

Left arm and right arm solutions 
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• The two solutions for θ3 correspond to the elbow-down and elbow-up 
positions respectively 

• Now solve for θ2: 
 
 
 
 

• Thus there are two solutions for the pair (θ2, θ3) 

Left arm and right arm solutions 
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• In general, there will be a maximum of four solutions to the inverse 
position kinematics of an elbow manipulator 

– Ex: PUMA 

RRR: Four total solutions 
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• Spherical configuration  
– Solve for θ1 using same method as with RRR  

 
– Again, if there is an offset, there 
will be left-arm and right-arm solutions 
– Solve for θ2: 

 
 
 
 

– Solve for d3: 
 

Example: RRP manipulator 
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Presenter
Presentation Notes
We assume that d3 cannot be negative, and thus there are two solutions (left arm and right arm, but no elbow up/elbow down)
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Next class…  

• Complete the discussion of inverse kinematics 
– Inverse orientation 
– Introduction to other methods 

• Introduction to velocity kinematics and the Jacobian 
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