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Abstract – Unmanned Ground Vehicles (UGVs) deployed in 
complex, unstructured environments demand suspension 
systems that ensure robust wheel–terrain contact, stability, and 
adaptability. The Rocker-Bogie mechanism originally 
developed for planetary rovers has emerged as an attractive 
solution due to its passive adaptability, kinematic redundancy, 
and energy efficiency. This paper presents a new mathematical 
model and kinematic analysis of the Rocker-Bogie suspension 
design as applied to UGVs. We derive the forward kinematics, 
establish differential relationships via the Jacobian matrix, and 
detail an iterative approach for inverse kinematics. 
Furthermore, we develop a Lagrangian dynamic formulation to 
capture the transient behavior and shock absorption 
characteristics of the suspension. Simulation studies illustrate 
the model’s validity over a range of terrain profiles, and 
sensitivity analyses highlight the influence of key design 
parameters. Finally, we discuss adaptive control strategies and 
avenues for future research, aiming to optimize Rocker-Bogie 
UGV performance in challenging environments. 

Keywords— Unmanned Ground Vehicle-UGV, Rocker-Bogie 
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I. INTRODUCTION 
The evolution of unmanned ground vehicles (UGVs) over 

recent decades has been driven by the need for reliable 
mobility across diverse and often harsh terrains. In 
applications ranging from military reconnaissance to search-
and-rescue operations and hazardous material handling, the 
capability to traverse irregular and unpredictable surfaces is 
paramount. Conventional suspension systems, such as rigid 
axles or independent suspensions have demonstrated 
limitations in maintaining continuous wheel terrain contact 
when confronted with obstacles, slopes, and rough ground. In 
contrast, the Rocker-Bogie suspension system, which was 
initially developed for extraterrestrial rovers, exhibits 
superior performance due to its unique passive adaptability 
and kinematic redundancy. 
The Rocker-Bogie mechanism achieves terrain conformity 
by employing two interconnected subassemblies (the rocker 
and the bogie) that work in tandem to distribute the vehicle’s 
load and maintain at least one wheel per side in contact with 
the ground at all times. For UGVs, the adaptation of the 
Rocker-Bogie design involves modifications in geometry, 
material selection, and control strategies to meet terrestrial 
operational demands. In particular, the integration of a 

mathematical model that encapsulates the system’s 
kinematics and dynamics is essential for understanding its 
behavior and optimizing design parameters. 
The Rocker-Bogie suspension system is composed of two 
primary assemblies: the rocker and the bogie. The rocker 
serves as a larger, primary beam that attaches directly to the 
rover body, while the bogie is a secondary assembly pivoted 
to the rocker. Each of these assemblies is connected to wheels 
via independent joints that allow for angular movement 
relative to the body of the rover. The configuration can be 
visualized as a multi-link chain where the interaction of the 
various joints governs the overall kinematics of the system. 
Key design principles include: 
Passive Adaptation: The system is designed to automatically 
adjust to terrain irregularities without the need for active 
control inputs. 
Wheel-Terrain Conformity: Maintaining continuous wheel 
contact with the surface is critical for traction. This is 
achieved through careful balancing of the degrees of freedom 
and pivot locations. 
Load Distribution: The design minimizes the effect of uneven 
loading by distributing forces across the multiple joints and 
links. 
The literature has extensively discussed the benefits and 
limitations of the Rocker-Bogie design. Researchers have 
modeled its behavior under various conditions, emphasizing 
its robustness in dynamic environments [1]. Recent studies 
have further elaborated on the dynamic response of the 
mechanism, integrating finite element analysis (FEA) with 
kinematic simulations to predict behavior under stress [2]. 

II. RELATED WORKS 
Existing literature on Rocker-Bogie systems includes: 
    Kinematic Modeling: Several works have derived the 
geometric relationships between joint angles, link lengths, 
and wheel positions, primarily in the context of planetary 
rovers. These models have been adapted for UGVs by 
incorporating terrestrial load distributions and terrain 
profiles. 
    Dynamic Analysis: Researchers have employed 
Lagrangian mechanics and multibody dynamics to analyze 
energy transmission, shock absorption, and transient 
responses in Rocker-Bogie suspensions. 
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    Control Strategies: The inherent kinematic redundancy of 
the system has been leveraged to develop adaptive and robust 
control schemes that optimize for stability, energy 
consumption, and terrain conformity. 
    Experimental Validation: Field tests and laboratory 
experiments with prototype vehicles have confirmed many of 
the theoretical predictions, although challenges remain in 
bridging the gap between idealized models and real-world 
behavior. 
Our work seeks to build on these contributions by presenting 
a complete mathematical model that integrates both 
kinematic and dynamic aspects, with an emphasis on its 
application to UGVs. 

 

III. MATHEMATICAL MODEL AND KINEMATIC ANALYSIS 
In a typical Rocker-Bogie UGV, the suspension is arranged 
symmetrically about the longitudinal axis. Each side of the 
vehicle consists of two main articulated subassemblies: 
    Rocker Assembly: This assembly is connected directly to 
the UGV chassis via a primary pivot. It is responsible for 
supporting the bulk of the vehicle’s mass and adapting to 
pitch changes. 
    Bogie Assembly: Connected to the rocker by a secondary 
hinge, the bogie introduces additional degrees of freedom. In 
most designs, two wheels are attached to the rocker while a 
third wheel is mounted on the bogie. This configuration 
ensures redundant contact with the terrain, even when one 
subassembly is significantly perturbed. 
A simplified schematic (see Figure 1) illustrates the key 
components of the Rocker-Bogie suspension system. In our 
model, the suspension is abstracted as a multi-link 
mechanism, where each link is considered a rigid body with 
known geometric parameters and each joint provides one 
degree of rotational freedom. 

 
Fig.1 Rocker-Bogie suspension system 

 
To facilitate a tractable mathematical analysis, we adopt the 
following assumptions: 
    Rigid Body Approximation: All links are assumed to be 
perfectly rigid. Elastic deformations are neglected. 
    Ideal Revolute Joints: Joints are modeled as frictionless 
revolute hinges with no backlash. 
    Planar Motion (Initial Analysis): The primary analysis is 
conducted in the sagittal (vertical) plane. An extension to 

three-dimensional (spatial) dynamics is discussed in later 
sections. 
    Continuous Wheel Contact: It is assumed that wheels 
maintain contact with the terrain at all times and that slip is 
negligible. 
    Symmetric Mass Distribution: The UGV is assumed to 
have a symmetric mass distribution with respect to its 
longitudinal axis, which simplifies the dynamics. 
    Small Angle Approximations: In portions of the analysis, 
small angle approximations are used to linearize certain 
expressions. However, the full nonlinear model is derived for 
completeness. 
These assumptions allow us to develop clear and concise 
analytical expressions that capture the essential behavior of 
the Rocker-Bogie system. 
We begin by establishing a global inertial coordinate system 
{X,Y,Z} with Z representing the vertical direction. For the 
initial planar analysis, we confine our discussion to the 
XZplane. Each link of the suspension is associated with a 
local coordinate frame. The transformation from one link’s 
frame to the next is expressed using homogeneous 
transformation matrices. 
 
For a given link i with length Li and joint angle θi, the 
transformation matrix Ti is defined as: 
 
 

      (1) 
 

 
 

The overall transformation from the base (attached to the 
UGV chassis) to the end of link nn is then given by the 
product       

 
 (2) 

 
The configuration of the mechanism is fully described by 

the vector of joint angles 
 

𝑞𝑞 = {𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝜃𝜃}.                 (3) 
 

The forward kinematics problem requires determining the 
position p of the wheel contact point in terms of the joint 
angles and link lengths. In homogeneous coordinates, the 
position is given by 

 
                  (4) 
 
 
Expanding the above expression, the x and z coordinates 

are: 
    (5) 
 
 
    (6) 
 
 
For the Rocker-Bogie UGV, we conceptually separate the 

kinematic chain into two segments - one corresponding to the 
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rocker assembly and the other to the bogie assembly. Let qR 
denote the set of joint angles in the rocker and qB the set in 
the bogie. Then the position of a wheel contact point is 
expressed as 

 
             (7) 

 
where p0 is the location at which the suspension attaches 

to the vehicle chassis. This formulation permits the 
independent design of rocker and bogie geometries so that 
wheel trajectories closely follow the terrain surface. 

The sensitivity of the end-effector’s position to variations 
in the joint angles is captured by the Jacobian matrix J(q). 
The Jacobian relates the joint velocity vector q˙ to the 
velocity p˙ of the wheel contact point: 

 
                     (8) 
For the k-th joint, the partial derivative of the end-effector 

position with respect to θk is given by 
 
                                                             (9) 
 
 
Differentiating the expressions for x(q) and z(q) yields 
 
   (10) 
 
 
   (11) 
 
Thus, the k-th column of the Jacobian is 
 
  (12) 
 
 
 
Stacking the columns for k=1,2,…,n results in the full 

Jacobian matrix 
  (13) 
 
The Jacobian not only provides insight into how joint 

velocities affect wheel position but also plays a critical role 
in solving the inverse kinematics problem. 
The inverse kinematics problem involves determining the set 
of joint angles q that will produce a desired wheel contact 
position pd: 
 

𝒑𝒑(𝑞𝑞)  =  𝒑𝒑𝑑𝑑              (14) 
 

Because the kinematic equations are nonlinear and the 
system may be redundant, iterative numerical methods are 
typically employed to solve for q. One common approach is 
the damped least-squares (DLS) method. The update rule for 
the joint angles at iteration k is 
 
𝑞𝑞(𝑘𝑘+1) =  𝑞𝑞(𝑘𝑘) − �𝐽𝐽�𝑞𝑞(𝑘𝑘)�

𝑇𝑇
𝐽𝐽�𝑞𝑞(𝑘𝑘)� + 𝜆𝜆𝜆𝜆�

−1
𝐽𝐽�𝑞𝑞(𝑘𝑘)�

𝑇𝑇
�𝐩𝐩�𝑞𝑞(𝑘𝑘)� −  𝐩𝐩𝑑𝑑�, (15) 

 
λ is a small damping parameter that ensures numerical 

stability (especially near singular configurations), 

 I is the identity matrix, 
p(q(k)) is the current estimate of the wheel contact point. 

 
Convergence is monitored by checking whether the norm 
∥Δq∥ falls below a predetermined threshold. In practice, the 
inherent kinematic redundancy in the Rocker-Bogie system 
allows for multiple solutions; additional criteria such as 
minimizing joint motion or avoiding extreme joint angles can 
be incorporated into the optimization process. 

 

IV. DYNAMIC MODELING USING LAGRANGIAN MECHANICS 
While the kinematic analysis determines the geometric 

relationships between joint angles and wheel positions, 
dynamic modeling is essential for understanding the 
suspension’s response to external disturbances, shocks, and 
varying terrain conditions. The dynamic behavior is 
influenced by inertial forces, gravitational loads, and energy 
dissipation through damping elements. A dynamic model is 
also necessary for the development of control strategies 
aimed at mitigating transient disturbances. 
The Lagrangian method provides a systematic way to derive 
the equations of motion for a mechanical system. The 
Lagrangian 𝓛𝓛 is defined as the difference between the kinetic 
energy T and the potential energy V: 

                                    (16) 
 
For the Rocker-Bogie system, the generalized coordinates 

are the joint angles q and their time derivatives �̇�𝒒. 
 
The kinetic energy of the system is the sum of the kinetic 

energies of each individual link. For link i with mass mi, 
moment of inertia Ii about its center of mass, and center-of-
mass velocity 𝒑𝒑𝒊𝒊̇ , the kinetic energy is given by 

   (17) 
 
Expressing 𝒑𝒑𝒊𝒊̇  in terms of the joint velocities �̇�𝒒  via 

appropriate Jacobian matrices allows us to write the total 
kinetic energy as 
 
   (18) 

where M(q) is the configuration-dependent mass (or 
inertia) matrix. 
In terrestrial UGV applications, gravitational potential energy 
is the dominant component. For link i, if the vertical position 
of its center of mass is zi, then 

 
𝑽𝑽𝒊𝒊 = 𝒎𝒎𝒊𝒊𝒈𝒈𝒈𝒈𝒊𝒊,  (19) 

 
with gg representing the gravitational acceleration. The 

total potential energy is therefore 
 

𝐕𝐕(𝐪𝐪) = ∑ 𝐦𝐦𝐢𝐢𝐠𝐠𝐠𝐠𝐢𝐢𝒏𝒏
𝒊𝒊=𝟎𝟎              (20) 

 
In some designs, additional potential energy terms due to 

elastic elements (e.g., preloaded springs at the joints) may be 
incorporated into V(q). 

 
The equations of motion are derived by applying the 

Euler-Lagrange equation for each generalized coordinate θi: 
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𝒅𝒅
𝒅𝒅𝒅𝒅

 � 𝝏𝝏£
𝝏𝝏𝜽𝜽𝒊𝒊̇
� −  𝝏𝝏£

𝝏𝝏𝛉𝛉𝐢𝐢
= 𝛕𝛕𝐢𝐢,                        (21) 

 
where τi represents the generalized torque applied at the 

i-th joint. For a passive Rocker-Bogie system, these torques 
often include contributions from joint stiffness and damping, 
modeled as 
𝝉𝝉𝒊𝒊 = −𝒌𝒌𝒊𝒊(𝜽𝜽𝒊𝒊 − 𝜽𝜽𝒊𝒊,𝟎𝟎) − 𝒄𝒄𝒊𝒊�̇�𝜽𝒊𝒊,   (22) 
with ki and ci denoting the stiffness and damping 

coefficients, and 𝜽𝜽𝒊𝒊,𝟎𝟎 the equilibrium angle. 
 
Substituting the expressions for T and V into the Euler-

Lagrange equations results in a set of nonlinear second-order 
differential equations: 

 
𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝑪𝑪(𝒒𝒒, �̇�𝒒)�̇�𝒒 + 𝑲𝑲(𝒒𝒒 − 𝒒𝒒𝟎𝟎) + 𝑮𝑮(𝒒𝒒) = 𝝉𝝉𝒆𝒆𝒆𝒆𝒅𝒅,    (23) 
 
where: 
 

 𝑪𝑪(𝒒𝒒, �̇�𝒒) represents the Coriolis and centrifugal terms, 
𝑲𝑲(𝒒𝒒 − 𝒒𝒒𝟎𝟎 ) captures the restoring torques due to joint 
stiffness, 
𝑮𝑮(𝒒𝒒) = 𝜵𝜵𝒒𝒒𝑽𝑽(𝒒𝒒) is the gravitational force vector, 
𝝉𝝉𝒆𝒆𝒆𝒆𝒅𝒅 accounts for external torques (e.g., impacts from terrain 
irregularities). 

Due to the complexity of the derived dynamic equations, 
numerical integration techniques such as Runge-Kutta 
methods are employed to simulate the suspension’s transient 
behavior over time. These simulations help evaluate shock 
absorption performance, chassis oscillations, and energy 
dissipation under various terrain conditions. The insights 
gained from the dynamic analysis are crucial for both design 
optimization and the development of control strategies. 

 For safe and effective UGV operation, it is essential that 
the wheels remain in continuous contact with the terrain. This 
condition can be mathematically expressed as 

 
𝒈𝒈𝒊𝒊 ≥ 𝒈𝒈𝒅𝒅𝒆𝒆𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏(𝒆𝒆𝒊𝒊),          (24) 

  
where 𝒈𝒈𝒊𝒊 is the vertical position of the ii-th wheel and 

𝒈𝒈𝒅𝒅𝒆𝒆𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏(𝒆𝒆𝒊𝒊)  is the terrain elevation at the corresponding 
horizontal location 𝒆𝒆𝒊𝒊. The kinematic design must ensure that 
even in the presence of disturbances, the overall 
configuration of the Rocker-Bogie system preserves 
sufficient wheel contact to maintain stability and traction. 
The static equilibrium configuration of the suspension 
corresponds to a local minimum of the potential energy V(q). 
To analyze the stability of an equilibrium configuration q∗, 
we examine the Hessian matrix of the potential energy: 

 
  (25) 

 
 
If 𝑯𝑯(𝒒𝒒∗) is positive definite, then small perturbations 

about 𝒒𝒒∗  will be met with restoring forces that drive the 
system back to equilibrium. This analysis is particularly 
important for designing the elastic (spring) elements that 
contribute to the system’s passive shock absorption. 

The compliance of the Rocker-Bogie system is 
determined by the stiffness and damping properties of the 
joints. The joint torque model (see formula 22) illustrates how 
the system absorbs and dissipates energy. Performance 
metrics in this context include: 
Peak Chassis Acceleration: Lower peak accelerations 
indicate better shock absorption. 
Energy Dissipated: The energy absorbed by the damping 
elements during transient events quantifies the system’s 
ability to smooth out disturbances. 
Recovery Time: The rate at which the system returns to 
equilibrium after a shock is an important performance 
measure. 

An important feature of the Rocker-Bogie mechanism is 
its kinematic redundancy. Multiple joint configurations can 
achieve the same wheel–terrain contact point. This 
redundancy allows designers to optimize for additional 
criteria such as: 
Minimizing Energy Consumption: By selecting 
configurations that reduce the amount of motion or avoid 
extreme joint angles. 
Maximizing Stability Margins: By choosing configurations 
that keep the center of gravity well within the support 
polygon. 
Avoiding Singular Configurations: By steering clear of joint 
configurations where the Jacobian loses rank and the system 
becomes less controllable. 

The analysis of the null space of the Jacobian matrix 
provides a mathematical basis for redundancy resolution. 

To validate our mathematical model, we performed 
simulations using MATLAB.  
The simulation environment incorporated multiple terrain 
profiles including a sinusoidal terrain described by 

 
𝒈𝒈𝒅𝒅𝒆𝒆𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏  (𝑥𝑥) = A sin �2𝜋𝜋x

𝜆𝜆
�  (26) 

 
where A is the amplitude and λ is the wavelength. 
  

A. Jacobian Analysis and Inverse Kinematics Convergence 
The Jacobian matrix J(q) was computed for various 

configurations. Near configurations where the determinant of 
J(q) approaches zero, the system is near a kinematic 
singularity; however, the damped least-squares inverse 
kinematics algorithm successfully converged in fewer than 
20 iterations for typical test cases.  

Dynamic simulations were performed to assess the 
response of the suspension to abrupt terrain changes. Time-
history plots of chassis vertical acceleration indicate that the 
passive compliance inherent in the Rocker-Bogie design 
effectively attenuates high-frequency shocks. In one 
simulation, a sudden step obstacle produced peak 
accelerations that were reduced by over 50% due to the 
damping elements. Fourier analysis of joint motion 
confirmed that the system suppresses resonant frequencies, 
and energy dissipation analyses revealed that the damping 
parameters could be tuned to balance shock absorption with 
energy efficiency.  
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Sensitivity Analysis 
A sensitivity study was conducted by varying key 

parameters (joint stiffness, damping coefficients, and link 
lengths) by ±10% and observing the effects on performance 
metrics.  

Key findings include: 
 Stiffness Variations: A 10% reduction in stiffness 

increased wheel slip by approximately 15% on rough terrain, 
while a 10% increase reduced slip at the cost of higher impact 
forces. 

Damping Variations: Increased damping improved shock 
absorption but reduced the system’s responsiveness to rapid 
terrain changes. 

 Link Length Variations: Changes in link lengths altered 
the effective stride and the curvature of the wheel trajectories, 
impacting both stability margins and energy consumption. 
 

B. Integration of Mathematical and Kinematic Analyses 
The integrated mathematical framework presented in this 

paper unifies the kinematic and dynamic aspects of the 
Rocker-Bogie suspension. Our derivations for forward 
kinematics and the Jacobian matrix provide precise 
relationships between joint motions and wheel trajectories, 
ensuring that the UGV maintains continuous terrain contact. 
Meanwhile, the dynamic model derived using Lagrangian 
mechanics explains how the system absorbs shocks and 
dissipates energy. Together, these models offer a tool for both 
design optimization and control strategy development. 

The Rocker-Bogie suspension offers significant 
advantages for UGV applications: 
Continuous Wheel Contact: By ensuring that at least one 
wheel on each side remains in contact with the terrain, the 
design enhances traction and vehicle stability. 
Passive Adaptability: The suspension adapts automatically to 
terrain irregularities, reducing the need for complex active 
control systems. 
Energy Efficiency: The predominantly passive operation 
reduces power consumption a critical consideration for long-
duration missions. 
Robust Shock Absorption: The combination of elastic and 
damping elements effectively mitigates the impact of high-
frequency disturbances. 
Kinematic Redundancy: Multiple configurations can achieve 
the same wheel position, providing flexibility to optimize 
additional performance criteria. 
These features are particularly important for UGVs operating 
in harsh and unpredictable environments, where reliability 
and efficiency are paramount. 

C. Challenges and Limitations 
Despite its many advantages, the Rocker-Bogie system 

also faces challenges: 
 Nonlinear Complexity: The derived kinematic and dynamic 
equations are highly nonlinear, which complicates real-time 
control and optimization. 
Singular Configurations: The Jacobian matrix may approach 
singularity in certain configurations, reducing the system’s 
controllability. Effective regularization techniques and 

adaptive control strategies are needed to overcome this 
limitation. 
Parameter Sensitivity: The performance is highly sensitive to 
variations in joint stiffness, damping, and geometric 
parameters. Variations due to manufacturing tolerances or 
wear may necessitate periodic recalibration or adaptive 
parameter tuning. 
Extension to Three Dimensions: While our planar analysis 
offers valuable insights, UGVs operate in a fully three-
dimensional environment. Extending the model to capture 
spatial dynamics introduces additional complexity and 
computational challenges. 

V. CONCLUSION 
This paper has presented a new mathematical model and 
kinematic analysis of the Rocker-Bogie suspension design for 
UGV applications. Our work integrates detailed derivations 
of forward kinematics, the Jacobian matrix, and an iterative 
inverse kinematics algorithm with a dynamic model based on 
Lagrangian mechanics. Key conclusions are as follows: 

The derived kinematic model accurately predicts the 
positions of wheel contact points, ensuring continuous terrain 
conformity. 

The Jacobian matrix analysis provides insight into the 
sensitivity of the system and identifies potential singular 
configurations. 

The dynamic model confirms that passive compliance—
combined with appropriate damping—effectively attenuates 
shocks and reduces chassis oscillations. 

Sensitivity analyses underscore the importance of precise 
parameter calibration and highlight opportunities for adaptive 
control. 

Kinematic redundancy inherent in the Rocker-Bogie 
design offers flexibility for optimizing additional 
performance criteria such as energy consumption and 
stability. 

Overall, the integrated framework developed herein lays 
a robust foundation for both the design and control of Rocker-
Bogie UGVs operating in challenging environments. 
This paper presents a rigorous, integrated mathematical 
framework for the analysis and design of Rocker-Bogie 
suspension systems for UGVs. By combining detailed 
kinematic formulations with dynamic modeling via 
Lagrangian mechanics, we have developed a foundation for 
understanding the complex interactions within the 
suspension. Simulation studies validate the theoretical 
models and highlight the importance of parameter tuning and 
adaptive control strategies. The insights provided here are 
intended to inform future research and development efforts 
aimed at optimizing UGV performance in challenging, 
unstructured environments. 
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	I. Introduction
	The evolution of unmanned ground vehicles (UGVs) over recent decades has been driven by the need for reliable mobility across diverse and often harsh terrains. In applications ranging from military reconnaissance to search-and-rescue operations and ha...
	The Rocker-Bogie mechanism achieves terrain conformity by employing two interconnected subassemblies (the rocker and the bogie) that work in tandem to distribute the vehicle’s load and maintain at least one wheel per side in contact with the ground at...
	The Rocker-Bogie suspension system is composed of two primary assemblies: the rocker and the bogie. The rocker serves as a larger, primary beam that attaches directly to the rover body, while the bogie is a secondary assembly pivoted to the rocker. Ea...
	Key design principles include:
	Passive Adaptation: The system is designed to automatically adjust to terrain irregularities without the need for active control inputs.
	Wheel-Terrain Conformity: Maintaining continuous wheel contact with the surface is critical for traction. This is achieved through careful balancing of the degrees of freedom and pivot locations.
	Load Distribution: The design minimizes the effect of uneven loading by distributing forces across the multiple joints and links.
	The literature has extensively discussed the benefits and limitations of the Rocker-Bogie design. Researchers have modeled its behavior under various conditions, emphasizing its robustness in dynamic environments [1]. Recent studies have further elab...

	II. Related works
	III. Mathematical model and Kinematic analysis
	(1)
	The overall transformation from the base (attached to the UGV chassis) to the end of link nn is then given by the product
	The configuration of the mechanism is fully described by the vector of joint angles
	The forward kinematics problem requires determining the position p of the wheel contact point in terms of the joint angles and link lengths. In homogeneous coordinates, the position is given by
	(4)
	Expanding the above expression, the x and z coordinates are:
	(5)
	(6)
	For the Rocker-Bogie UGV, we conceptually separate the kinematic chain into two segments - one corresponding to the rocker assembly and the other to the bogie assembly. Let qR denote the set of joint angles in the rocker and qB the set in the bogie....
	where p0 is the location at which the suspension attaches to the vehicle chassis. This formulation permits the independent design of rocker and bogie geometries so that wheel trajectories closely follow the terrain surface.
	The sensitivity of the end-effector’s position to variations in the joint angles is captured by the Jacobian matrix J(q). The Jacobian relates the joint velocity vector q˙ to the velocity p˙ of the wheel contact point:
	(8)
	For the k-th joint, the partial derivative of the end-effector position with respect to θk is given by
	(9)
	Differentiating the expressions for x(q) and z(q) yields
	(10)
	(11)
	Thus, the k-th column of the Jacobian is
	(12)
	Stacking the columns for k=1,2,…,n results in the full Jacobian matrix
	(13)
	The Jacobian not only provides insight into how joint velocities affect wheel position but also plays a critical role in solving the inverse kinematics problem.
	𝒑(𝑞) = ,𝒑-𝑑.              (14)
	Because the kinematic equations are nonlinear and the system may be redundant, iterative numerical methods are typically employed to solve for q. One common approach is the damped least-squares (DLS) method. The update rule for the joint angles at ite...
	λ is a small damping parameter that ensures numerical stability (especially near singular configurations),
	I is the identity matrix,
	p(q(k)) is the current estimate of the wheel contact point.

	IV. Dynamic Modeling Using Lagrangian Mechanics
	While the kinematic analysis determines the geometric relationships between joint angles and wheel positions, dynamic modeling is essential for understanding the suspension’s response to external disturbances, shocks, and varying terrain conditions. T...
	(16)
	For the Rocker-Bogie system, the generalized coordinates are the joint angles q and their time derivatives ,𝒒..
	The kinetic energy of the system is the sum of the kinetic energies of each individual link. For link i with mass mi, moment of inertia Ii about its center of mass, and center-of-mass velocity ,,𝒑-𝒊.., the kinetic energy is given by
	(17)
	Expressing ,,𝒑-𝒊.. in terms of the joint velocities ,𝒒.  via appropriate Jacobian matrices allows us to write the total kinetic energy as
	where M(q) is the configuration-dependent mass (or inertia) matrix.
	In terrestrial UGV applications, gravitational potential energy is the dominant component. For link i, if the vertical position of its center of mass is zi, then
	,𝑽-𝒊.=,𝒎-𝒊.,𝒈𝒛-𝒊.,  (19)
	with gg representing the gravitational acceleration. The total potential energy is therefore
	In some designs, additional potential energy terms due to elastic elements (e.g., preloaded springs at the joints) may be incorporated into V(q).
	The equations of motion are derived by applying the Euler-Lagrange equation for each generalized coordinate θi:
	where τi represents the generalized torque applied at the i-th joint. For a passive Rocker-Bogie system, these torques often include contributions from joint stiffness and damping, modeled as
	,𝝉-𝒊.=−,𝒌-𝒊.(,𝜽-𝒊.−,𝜽-𝒊,𝟎.)−,𝒄-𝒊.,,𝜽.-𝒊.,   (22)
	with ki and ci denoting the stiffness and damping coefficients, and ,𝜽-𝒊,𝟎. the equilibrium angle.
	Substituting the expressions for T and V into the Euler-Lagrange equations results in a set of nonlinear second-order differential equations:
	𝑴(𝒒),𝒒.+𝑪(𝒒,,𝒒.),𝒒.+𝑲(𝒒−,𝒒-𝟎.)+𝑮(𝒒)=,𝝉-𝒆𝒙𝒕.,    (23)
	where:
	𝑪(𝒒,,𝒒.) represents the Coriolis and centrifugal terms,
	𝑲(𝒒−,𝒒-𝟎.) captures the restoring torques due to joint stiffness,
	𝑮(𝒒)=,𝜵-𝒒.𝑽(𝒒) is the gravitational force vector,
	,𝝉-𝒆𝒙𝒕. accounts for external torques (e.g., impacts from terrain irregularities).
	Due to the complexity of the derived dynamic equations, numerical integration techniques such as Runge-Kutta methods are employed to simulate the suspension’s transient behavior over time. These simulations help evaluate shock absorption performance, ...
	For safe and effective UGV operation, it is essential that the wheels remain in continuous contact with the terrain. This condition can be mathematically expressed as
	,𝒛-𝒊.≥,𝒛-𝒕𝒆𝒓𝒓𝒂𝒊𝒏.,,𝒙-𝒊..,          (24)
	where ,𝒛-𝒊. is the vertical position of the ii-th wheel and ,𝒛-𝒕𝒆𝒓𝒓𝒂𝒊𝒏.(,𝒙-𝒊.) is the terrain elevation at the corresponding horizontal location ,𝒙-𝒊.. The kinematic design must ensure that even in the presence of disturbances, the ove...
	If 𝑯(,𝒒-∗.) is positive definite, then small perturbations about ,𝒒-∗. will be met with restoring forces that drive the system back to equilibrium. This analysis is particularly important for designing the elastic (spring) elements that contribute ...
	The compliance of the Rocker-Bogie system is determined by the stiffness and damping properties of the joints. The joint torque model (see formula 22) illustrates how the system absorbs and dissipates energy. Performance metrics in this context include:
	Peak Chassis Acceleration: Lower peak accelerations indicate better shock absorption.
	Energy Dissipated: The energy absorbed by the damping elements during transient events quantifies the system’s ability to smooth out disturbances.
	Recovery Time: The rate at which the system returns to equilibrium after a shock is an important performance measure.
	An important feature of the Rocker-Bogie mechanism is its kinematic redundancy. Multiple joint configurations can achieve the same wheel–terrain contact point. This redundancy allows designers to optimize for additional criteria such as:
	Minimizing Energy Consumption: By selecting configurations that reduce the amount of motion or avoid extreme joint angles.
	Maximizing Stability Margins: By choosing configurations that keep the center of gravity well within the support polygon.
	Avoiding Singular Configurations: By steering clear of joint configurations where the Jacobian loses rank and the system becomes less controllable.
	The analysis of the null space of the Jacobian matrix provides a mathematical basis for redundancy resolution.
	To validate our mathematical model, we performed simulations using MATLAB.
	The simulation environment incorporated multiple terrain profiles including a sinusoidal terrain described by
	where A is the amplitude and λ is the wavelength.
	A. Jacobian Analysis and Inverse Kinematics Convergence
	The Jacobian matrix J(q) was computed for various configurations. Near configurations where the determinant of J(q) approaches zero, the system is near a kinematic singularity; however, the damped least-squares inverse kinematics algorithm successfull...
	Dynamic simulations were performed to assess the response of the suspension to abrupt terrain changes. Time-history plots of chassis vertical acceleration indicate that the passive compliance inherent in the Rocker-Bogie design effectively attenuates ...
	Sensitivity Analysis
	A sensitivity study was conducted by varying key parameters (joint stiffness, damping coefficients, and link lengths) by ±10% and observing the effects on performance metrics.
	Key findings include:
	Stiffness Variations: A 10% reduction in stiffness increased wheel slip by approximately 15% on rough terrain, while a 10% increase reduced slip at the cost of higher impact forces.
	Damping Variations: Increased damping improved shock absorption but reduced the system’s responsiveness to rapid terrain changes.
	Link Length Variations: Changes in link lengths altered the effective stride and the curvature of the wheel trajectories, impacting both stability margins and energy consumption.

	B. Integration of Mathematical and Kinematic Analyses
	The integrated mathematical framework presented in this paper unifies the kinematic and dynamic aspects of the Rocker-Bogie suspension. Our derivations for forward kinematics and the Jacobian matrix provide precise relationships between joint motions ...
	The Rocker-Bogie suspension offers significant advantages for UGV applications:
	Continuous Wheel Contact: By ensuring that at least one wheel on each side remains in contact with the terrain, the design enhances traction and vehicle stability.
	Passive Adaptability: The suspension adapts automatically to terrain irregularities, reducing the need for complex active control systems.
	Energy Efficiency: The predominantly passive operation reduces power consumption a critical consideration for long-duration missions.
	Robust Shock Absorption: The combination of elastic and damping elements effectively mitigates the impact of high-frequency disturbances.
	Kinematic Redundancy: Multiple configurations can achieve the same wheel position, providing flexibility to optimize additional performance criteria.

	C. Challenges and Limitations
	Despite its many advantages, the Rocker-Bogie system also faces challenges:
	Nonlinear Complexity: The derived kinematic and dynamic equations are highly nonlinear, which complicates real-time control and optimization.
	Singular Configurations: The Jacobian matrix may approach singularity in certain configurations, reducing the system’s controllability. Effective regularization techniques and adaptive control strategies are needed to overcome this limitation.
	Parameter Sensitivity: The performance is highly sensitive to variations in joint stiffness, damping, and geometric parameters. Variations due to manufacturing tolerances or wear may necessitate periodic recalibration or adaptive parameter tuning.
	Extension to Three Dimensions: While our planar analysis offers valuable insights, UGVs operate in a fully three-dimensional environment. Extending the model to capture spatial dynamics introduces additional complexity and computational challenges.


	V. Conclusion
	This paper has presented a new mathematical model and kinematic analysis of the Rocker-Bogie suspension design for UGV applications. Our work integrates detailed derivations of forward kinematics, the Jacobian matrix, and an iterative inverse kinemati...
	The derived kinematic model accurately predicts the positions of wheel contact points, ensuring continuous terrain conformity.
	The Jacobian matrix analysis provides insight into the sensitivity of the system and identifies potential singular configurations.
	The dynamic model confirms that passive compliance—combined with appropriate damping—effectively attenuates shocks and reduces chassis oscillations.
	Sensitivity analyses underscore the importance of precise parameter calibration and highlight opportunities for adaptive control.
	Kinematic redundancy inherent in the Rocker-Bogie design offers flexibility for optimizing additional performance criteria such as energy consumption and stability.
	Overall, the integrated framework developed herein lays a robust foundation for both the design and control of Rocker-Bogie UGVs operating in challenging environments.
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