
Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21

16

Abstract— Positioning mobile systems with high accuracy is
a prerequisite for intelligent autonomous behavior, both in
industrial environments and in field robotics. This paper
describes the setup of a robotic platform and its use for the
evaluation of simultaneous localization and mapping (SLAM)
algorithms. A configuration using a mobile robot Husky A200,

and a LiDAR (light detection and ranging) sensor was used to
implement the set-up. For verification of the proposed setup,
different scan matching methods for odometry determination
in indoor and outdoor environments are tested.

Keywords— LiDAR, LOAM (Lidar Odometry and Mapping),

mapping, machine learning, mobile robotics, navigation, ROS,
SLAM.

I. INTRODUCTION

The range of areas in which autonomous mobile systems
are used is growing continuously. The use of autonomous
transport vehicles in industry or robots in private
households has now become standard. The development of
autonomous motor vehicles is also progressing steadily.
Machine learning offers the field of robotics a set of tools for
designing difficult and complex behaviors. On the other
hand, the challenges of robotics-related problems also
provide a positive impact on developments in robot
learning.

In all use cases, the basic challenge is more or less the
same. Autonomous mobile systems must simultaneously
estimate their position in an unknown environment and
simultaneously create a map of the environment. This
challenge is also referred to as the simultaneous
localization and mapping (SLAM) problem. While filter-
based approaches were the most common solution for this
problem before 2010, graph SLAM is now the most popular
and efficient approach [1, 2]. In this approach, a robot's
landmarks and poses are represented by a graph, which
allows the SLAM problem to be solved via nonlinear
optimization techniques.

The SLAM problem refers to the difficulty of locating and
mapping a mobile robot in an unknown environment with
its simultaneous positioning relative to this map [3]. When
no other navigation capabilities, such as GNSS, are available,
the SLAM problem becomes more important. While already
solving the problem in simple applications, SLAM
algorithms can be pushed to their limits by challenging
dynamic robot motions or highly dynamic environments
[4]. To obtain a map, sensors must be used to detect the
structure of the environment. A variety of possible sensor

types are available for this purpose.
Finally, by determining the position of the environmental

features, it is possible to obtain a representation of the
robot's environment and thus a map that can be used in
various ways, such as localization. The basic problem within
SLAM is to estimate the trajectory of the robot as well as the
position of all environmental features without knowing the
true position of the features or the robot itself [3, 5]. LiDAR
sensors, in particular, play a key role in sensing the
environment of mobile systems [6, 7].

II. RANGE SENSING BASICS

Range sensors are devices that capture the 3-D structure
of surrounding objects from the sensor's perspective. They
typically measure the distance to the nearest surfaces - that
part of the scene is "visible" from the sensor. There is no
full three-dimensional observation of all sides of the scene,
and so in the field of sensory research is increasingly talking
about two-and-a-half dimensional (2.5-D) data. (2.5-D).

The range data is a two-dimensional (2.5-D) or three-
dimensional representation of the environment around the
robot. The three-dimensional aspect arises because the
coordinates (X, Y, Z) of one or more points in the scene are
measured. But usually, only the fronts of objects are
observed - that part of the scene that is visible from the
robot. Typically, we do not have a full three-dimensional
observation of all scene sides. Hence the term "2.5-D."

Two basic range measurement technologies exist
triangulation and time-of-flight measurement, and there are
multiple variations exist of each.

A. Triangulation

Triangulation sensors measure depth by determining the
angle formed by rays from a world point to sensors located
at a distance 𝑏. This so-called baseline of length 𝑏 separates
the sensors, assuming for simplicity that one of the rays
forms a right angle with the baseline. Angle 𝜃 of the other
sensor ray is then related to the depth 𝑍 perpendicular to
the baseline through the relation:

tan 𝜃 =
𝑍

𝑏
. (1)

An image sensor measures the angle 𝜃 by an offset in the
image plane relative to the primary beam. This shift 𝑥 is
denoted as misalignment. If the image plane is assumed to
be parallel to the baseline, then tan 𝜃 = 𝑓/𝑥, and the basic
equation of triangulation depth sensors is obtained

Design and Implementation of a LIDAR Based Range Sensor System

Stefan Нensel(1), Marin B. Marinov(2), Markus Obert(1) and Dimitre Trendafilov(2)
 (1)University of Applied Sciences Offenburg, Department for Electrical Engineering, Offenburg, Germany

(2)Technical University of Sofia, Department of Electronics, Sofia, Bulgaria

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21

17

𝑍 =
𝑓𝑏

𝑥
. (2)

B. Time of Flight

The method used in time-of-flight (TOF) sensors is like
that of a radar: it measures the time it takes light to reach
an object and return. Since light travels at about 0.3 𝑚 per
nanosecond, a very accurate TOF measurement is needed.

As they measure time-of-flight, these sensors can
theoretically have constant accuracy irrespective of the
distance to the object - unlike triangulation sensors, whose
accuracy decreases with the square of the distance to the
object. However, TOF sensors cannot achieve the high
accuracy of triangulation sensors for closely spaced objects,
and so they are not typically used in close-range
applications.

1) Direct Time of Flight

In direct TOF sensors, travel time is measured with a
high-speed stopwatch. Direct TOF laser range sensors are
also called LiDAR or LaDAR (laser radar sensors). The travel
time multiplied by the speed of light (in a given medium -
space, air, or water and corrected for the density and
temperature of the medium) gives the distance

2𝑑 = 𝑐𝑡, (3)

where 𝑑 is the distance to the object, 𝑐 is the light speed, and
𝑡 is the travel time. The error in the measurement of time 𝑡
results in a proportional error in the distance. In practice,
an attempt is made to measure the peak of the output pulse,
which has a finite range; weak reflections from distant
objects make this peak difficult to measure, and therefore
the error tends to increase with the distance. Multiple
readings averaging can reduce the random error in these
measurements [8].

The simplest TOF sensors use only a single beam, so
range measurements are obtained from only one point on
the surface. Robotics applications typically need
significantly more information. To obtain this information,
the laser beam is moved across the stage. Typically, the
beam is moved using a set of mirrors [8].

Typical ground based TOF sensors suitable for robotics
applications have a range of 10 − 100 𝑚 and an accuracy of
5 − 10 𝑚𝑚. The volume of the scanned scene depends on
the speed of the moving mirrors and the pulse rate, with
typical values 1000 − 25000 points per second.

The scanning multibeam LiDARs can increase the amount
of information available. Companies such as Velodyne and
Oster produce devices with 16, 32, 64, and 128 vertically
aligned beams that acquire point data at up to 15 𝑠𝑐𝑎𝑛𝑠/𝑠
(1.3 𝑀𝑃𝑖𝑥𝑒𝑙/𝑠), with a full 360-inch horizontal scan and 27-
inch vertical FOV from the laser array. The laser pulse
length is 5 𝑛𝑠 and the depth accuracy is approximately 2 𝑐𝑚.
These devices are frequently used in environmental
reconstruction, autonomous driving, and obstacle
avoidance.

Flash LIDAR
Flash LIDARs have a two-dimensional detector array,

unlike scanning devices. Instead of one or several laser
beams, the light source pulse is shaped to cover a large area.
All pixels start their timers when the pulse is initiated and
measure the time it takes to receive the backscattered light.
Typically, a few dozen samples are taken and averaged to
reduce noise in the measurements - the amount of energy
received is quite small since the laser is not focused on a
beam. The pixels on the detector array are quite large
because of the timing electronics; a typical ASC device has
128𝑥128 pixels and can capture data at up to 60 𝐻𝑧. These
devices are expensive and therefore not used in consumer
applications [8, 9].

2) Indirect Time of Flight Sensors

In indirect TOF sensors, the distance is measured and
transit times are determined from certain properties of the
propagating beam. The two most important methods are
based on modulation and phase differences and signal
intensity [8].

III. IMPLEMENTATION

A. Hardware

1) LiDAR OS1
Fig. 1 shows the OS1 LiDAR from the company Ouster,

which was used for this work. With the help of an interface
box, the LiDAR sensor can be connected to a computer via a
LAN cable. For the operation of the sensor, a 24 𝑉 power
supply is also required.

The Ouster LiDAR is suitable for distances between 0.3 𝑚
to 100 𝑚 and has a vertical field of view of 45° (±22.5°). It
has a vertical resolution of 128 lines and a configurable
horizontal resolution of 512, 1024, or 2048 lines.
Depending on the resolution, the LiDAR sensor can scan its
environment at 10 𝐻𝑧 or 20 𝐻𝑧. Thus, at a resolution of
128x2048 and the frequency of 10 𝐻𝑧, up to 2621440
points can be captured by the sensor within one second,
corresponding to a data rate of up to 254 𝑀𝑏/𝑠 [10].

Fig. 1. Ouster OS1 with 128 lines [11].

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21

18

For later outdoor applications, the raster size is also of
interest. The determination of the raster size with which the
environment is scanned, as a function of the distance, can
be determined using trigonometric relationships. This
relationship is shown in Fig. 2.

LiDAR

Vertical

Horizontal

r

h
 =

 3
8

,2
7

 m

ϕ = 22,5°

d

ϕ

Fig. 2. Up: Horizontal distance between two laser beams as a function of
distance; Down: Vertical field of view as a function of distance (100 m).

On the one hand, the maximum distance of 100 𝑚 is

considered, which is particularly interesting for outdoor
applications. On the other hand, a distance of 10 𝑚 is
considered for the indoor area. The raster values,
depending on the resolution and the distance, are listed in
Table 1.

Table 1. Distance of the measuring points depends on the

distance [12].

Alignment
Resolution,

points
Field of
view, °

Angle betw.
2 beams, °

Distance,
m

Raster-
size, cm

Vertical 128 45 0.35
100 61.36

10 6.14

Horizontal

512 360 0.70
100 122.72

10 12.27

1028 360 0.35
100 61.12

10 6.11

2048 360 0.18
100 30.68

10 3.07

For distances in the range of 10 𝑚, a vertical grid of

approx. 6 𝑐𝑚 and a horizontal grid between 3 𝑐𝑚 and 12 𝑐𝑚
is obtained. In the outdoor area, a vertical grid of approx.
61 𝑐𝑚 and a horizontal grid between 30 𝑐𝑚 and 120 𝑐𝑚 are
obtained.

For indoor applications, where distances are smaller and
there are many flat surfaces such as walls and floors, a
horizontal resolution of 512 measurement points is
sufficient. In the outdoor area, where there are considerably
larger distances and increasingly complex structures such

as trees, a horizontal resolution of 2048 measuring points
is advantageous. This can be seen, for example, in the
following images of the laser scanner in the indoor and
outdoor areas (Fig. 3).

a)

b)

Fig. 3. Laser scanning in a) indoor and b) outdoor areas with the Ouster
LiDAR OS1.

2) Husky A200

The UGV (Unmanned Ground Vehicle) "Husky A200"
from Clearpath Robotics, which can be seen in Fig. 4, is used
for this work.

The robot platform, which is equipped with an all-wheel-
drive, can be remotely controlled with the aid of a
controller. In this chapter, the structural design of the robot
platform is described. First, the hardware structure is
considered. This is followed by a brief general introduction
to ROS (Robot Operating System) and the software
structure.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21

19

Fig. 4. Laser scanning in indoor and outdoor areas with the Ouster
LiDAR OS1 [12].

A structural diagram of the hardware setup is shown in

Fig. 5. Inside the Husky is the main computer, which
contains the basic system for the Husky. When the rover is
switched on, the main computer and thus all necessary
processes are started automatically. The MCU (Motor
Control Unit) is also connected to the Husky computer via a
serial RS232 interface, which controls the motors of the
robot platform and receives the odometry data [13].

In addition to the main computer, there is a second
computer (Pokini) that is connected to the main computer
via a router. The two computers are each connected to
different sensors and have the necessary software packages
accordingly. A GPS (Global Positioning System) module is
connected to the Husky as well as the 128 lines LiDAR OS1
from Ouster. The Pokini is equipped with an IMU (Inertial
Measurement Unit) from X-sense for inertial data
acquisition and an RTK-GPS (Real-Time Kinematic-GPS)
from u-blox. This will later be used as a reference to
evaluate the accuracy of the trajectory estimation. The two
computers can be accessed and communicated with via the
WLAN router using an SSH connection.

B. Software

ROS is used as the framework for exchanging messages
and controlling the Husky. In the following, the functionality
of ROS is described first and then the structure of the ROS
network of this robot platform is described.

1) Robot Operating System (ROS)

ROS (Robot Operating System) is an open-source
platform for programming robot systems. It is a meta-
operating system that provides various tools for simulation
and visualization as well as libraries. The libraries mainly
include hardware abstractions as well as device drivers for
sensors and actuators [14].

ROS is a peer-to-peer network, which means that all
participants have equal rights and that services can be
offered and used. The individual participants can be
distributed over several computers, whereby they are
loosely coupled by the ROS communication infrastructure.
To organize communication, there is exactly one master in
each ROS network that manages communication and with

which each node must be registered, as illustrated in Fig. 6.

ROS nodes represent programs executable via a
terminal, which can be compiled, executed, and managed
individually. The organization of the Nodes takes place in
packages, which contain the source code, Launch files, and
configuration files [14, 15] .

TP-Link

(Router)

External

Laptop

Powerbank

12V
Powerbank

12V

Pokini

u-blok RTK-

GPS

Xsens IMU

Husky PC

Husky Akku

Ouster

LIDAR

GPS-Modul

Arduino

Powerbank

24V

Husky A200

Chassis

RS232

USB

LAN

WLAN

LAN LAN

USB

USB

Fig. 5. The hardware structure of the robot platform (based on [13]).

ROS Master

Node 2
Subscriber

Node 1
Publisher

RegistrationRegistration

Informs about
connection

Topic
Subscribe

Subscribe

Publish

Messages

Fig. 6. Structural organization of ROS [14].

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21

20

The nodes communicate with each other via so-called
topics. Each node can publish different topics or subscribe
to topics that are of interest to it. For example, sensor data
can be shared via a topic and subscribed to by the nodes that
require this sensor information.

2) ROS structure Husky

When the Husky is started, a ROS core, which represents
the master, is automatically started on the Husky computer.
All necessary ROS packages that are required for the
operation of the Husky are executed. If the corresponding
sensors are to be started or used, they must be started
manually, for example via an SSH connection, on the
respective computer on which the corresponding software
packages are installed. For example, the node of the Ouster
LiDAR sensor is started on the Husky computer. The exact
description of which packages can be started on which
computer and how is given in the GitLab repository. Finally,
the hardware setup, as described in Fig. 5, allows for
subscribing or publishing the desired topics from any
computer, enabling easy cross-network data exchange.

IV. EXPERIMENTAL RESULTS WITH HDL_GRAPH_SLAM

A. The parking lot of the University of Offenburg

The first outdoor test was recorded in the parking lot of
Offenburg University. On the day of the test, the parking lot
was sparsely filled with cars, as can be seen in Fig. 7.

Fig. 7. Trajectories of the different scan matching methods (FAST_GICP,
FAST_VGICP, and RTK GPS as ground truth) in the parking lot of the
Offenburg University.

The parking lot is almost flat and very wide so that only
ground surfaces are detected near the Husky robot, and
trees and buildings can be detected by the LiDAR sensor
from approx. 40 m. The LiDAR sensor is also able to detect
trees and buildings. As a ground truth (reference), the
trajectory was also determined using an RTK GPS. For this
purpose, the base station was calibrated at the position of
the car at the starting point. The RTK GPS can achieve the
accuracy of 2 𝑐𝑚 when the base station is calibrated. The
total distance of the trajectory is 180 𝑚 with a duration of
223 𝑠.

For verification, different scan matching methods for
odometry determination are tested again. As in the indoor

area, FAST_GICP and FAST_VGICP were shown to be the
most suitable for this application. While the hdl_graph_slam
with NDT_OMP deviates significantly from the ground truth
up to the first loop closure, the deviation of the
hdl_graph_slam with the other two algorithms is a
maximum of 20 𝑐𝑚 (Fig. 8).

Fig. 8. Left: Trajectories of the different scan matching methods
(FAST_GICP, FAST_VGICP, NDT_OMP, and RTK GPS as ground truth) in the
parking lot of the University of Offenburg. Right: Trajectory with four loop
closures found.

After the first Loop Closure, the deviation is reduced to

2 𝑐𝑚 with all scan matching algorithms. In the second loop,
the deviation with NDT_OMP is up to 3 𝑚, but decreases
again to a maximum of 1 m at the second loop closure. With
FAST_GICP and FAST_VGICP, the deviation is 50 𝑐𝑚 at the
most and decreases again at the Loop Closure at the end to
20 𝑐𝑚 at the most . The loop closures found by
hdl_graph_slam can be seen on the right-hand side in Fig. 8.

B. Check of the altitude course

In addition to the trajectory, the altitude course is also
checked. The RTK GPS cannot be used as a reference, since
its elevation values vary by several meters (Fig. 9, b) and this
is a flat parking lot. The values of the hdl_graph_slam,
however, only vary by ±5 cm.

Fig. 9. Elevation course of the trajectory of the different scan matching
methods (FAST_GICP, FAST_VGICP, and NDT_OMP) on the parking lot of

the University of Offenburg.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21

21

Fig. 10. Altitude course of the RTK GPS (red).

V. CONCLUSION

This paper presents a system for the implementation and
evaluation of complex localization and mapping
procedures. The considered methods are suitable for
reliable localization in complex scenarios, such as logistics
applications in Industry 4.0, exploration and sensing in field
robotics, or applications in service robotics.

Currently, a major problem is the precise positioning of
mobile systems, which is a prerequisite for any autonomous
behavior in industrial environments and field robotics. The
paper describes the setup of an experimental platform and
its use for the evaluation of SLAM algorithms

With each scan of a LiDAR sensor, a point cloud with
measurement points is obtained, as shown in the previous
chapter. To be able to use these point clouds for mapping or
localization in a map, the challenge is to "match" the current
scan with an already known scan of the surrounding area.
The process of matching two scans is also called
registration. There are different scanmatching algorithms
for registration.

Among the most common are the Iterative Normal
Distribution Transform (NDT), Closest Point (ICP), and
Voxelized Generalized Iterative Closest Point (VGICP)
algorithms. In the next stages of the study, different
algorithms will be investigated and compared in indoor and
outdoor spaces.

ACKNOWLEDGMENTS

This research is supported by the Bulgarian National
Science Fund in the scope of the project “Exploration the
application of statistics and machine learning in
electronics” under contract number КП-06-Н42/1.

REFERENCES

[1] M. Ivanova, P. Petkova and P. Petkov, "Machine Learning

and Fuzzy Logic in Electronics: Applying Intelligence in

Practice," Electronics, vol. 10, no. (22):2878, 2021.

[2] S. Hensel, M. B. Marinov, C. Kehret and M. Stefanova-

Pavlova, "Experimental Set-up for Evaluation of Algorithms

for Simultaneous Localization and Mapping. In: Yilmaz M.,

Niemann J., Clarke P., Messnarz R. (eds.) Systems, Software

and Services Proces," Systems, Software and Services Process

Improvement. EuroSPI 2020. Communications in Computer

and Information Science, vol. 1251, pp. 433-444, 2020.

[3] H. Durrant-Whyte and T. Bailey, "Simultaneous Localisation

and Mapping (SLAM): Part I The Essential Algorithms,"

Robotics and Automation Magazine, vol. 2, p. 1–9, 2006.

[4] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,

J. Neira, I. Reid and J. Leonard, "Past, Present, and Future of

Simultaneous Localization and Mapping: Towards the

Robust-Perception Age," IEEE Transactions on Robotics, vol.

32, no. 6, 2016.

[5] J. Zhang and S. Singh, "LOAM: Lidar Odometry and

Mapping in Real-time," in Robotics: Science and Systems

Conference, Berkeley, 2014.

[6] H. Weber, "Funktionsweise und Varianten von LiDAR-

Sensoren," [Online]. Available:

https://cdn.sick.com/media/docs/5/25/425/whitepaper_lidar_d

e_im00794 25.pdf . [Accessed Oct. 2021].

[7] I. Maksymova, C. Steger and N. Druml, "Review of LiDAR

Sensor Data Acquisition and Compression for Automotive

Applications," Proceedings, Vols. 2, 852, 2018.

[8] B. Siciliano and O. Khatib, Eds., Springer Handbook of

Robotics, Springer, 2016.

[9] W. Hess, D. Kohler, H. Rapp and D. Andor, "Real-Time Loop

Closure in 2D LIDAR SLAM," in IEEE International

Conference on Robotics and Automation (ICRA), 2016.

[10] Ouster, "Ouster OS1: Mid-Range High-Resolution Imaging

Lidar," [Online]. Available: https://ouster.com/products/os1-

lidar-sensor/. [Accessed 20 Oct. 2021].

[11] Ouster, "OS1 Hardware User Manual," [Online]. Available:

https://levelfivesupplies.com/wp-

content/uploads/2019/03/OS-1-User-Guide-Hardware.pdf.

[Accessed 20 Sept. 2021].

[12] M. Obert, "Inbetriebnahme und Evaluierung des

hdl_graph_slam mit einem 128 Zeilen Ouster LiDAR -Sensor

auf der Husky Roboterplattform von Clearpath," Hochschule

Offenburg, Offenburg, 2021.

[13] C. Kupitz, "Inbetriebnahme und Verifizierung eines Kalman

Filter zur Lagebestimmung des Clearpath Robotics Husky

A200," 2021.

[14] E. Jelavic, "ETH Zürich: Programming for Robotics,

Introduction to ROS," [Online]. Available:

https://rsl.ethz.ch/education-students/lectures/ros.html.

[Accessed Feb. 2022].

[15] Blasdel et al., "About ROS.Version: 2020," [Online].

Available: https://www.ros.org/about-ros/.

