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Abstract— Positioning mobile systems with high accuracy is 
a prerequisite for intelligent autonomous behavior, both in 
industrial environments and in field robotics. This paper 
describes the setup of a robotic platform and its use for the 
evaluation of simultaneous localization and mapping (SLAM) 
algorithms. A configuration using a mobile robot Husky A200, 

and a LiDAR (light detection and ranging) sensor was used to 
implement the set-up. For verification of the proposed setup, 
different scan matching methods for odometry determination 
in indoor and outdoor environments are tested. 
 
Keywords— LiDAR, LOAM (Lidar Odometry and Mapping), 

mapping, machine learning, mobile robotics, navigation, ROS, 
SLAM.  

I. INTRODUCTION 

The range of areas in which autonomous mobile systems 
are used is growing continuously. The use of autonomous 
transport vehicles in industry or robots in private 
households has now become standard. The development of 
autonomous motor vehicles is also progressing steadily. 
Machine learning offers the field of robotics a set of tools for 
designing difficult and complex behaviors.  On the other 
hand, the challenges of robotics-related problems also 
provide a positive impact on developments in robot 
learning. 

In all use cases, the basic challenge is more or less the 
same. Autonomous mobile systems must simultaneously 
estimate their position in an unknown environment and 
simultaneously create a map of the environment. This 
challenge is also referred to as the simultaneous 
localization and mapping (SLAM) problem. While filter-
based approaches were the most common solution for this 
problem before 2010, graph SLAM is now the most popular 
and efficient approach [1, 2]. In this approach, a robot's 
landmarks and poses are represented by a graph, which 
allows the SLAM problem to be solved via nonlinear 
optimization techniques.  

The SLAM problem refers to the difficulty of locating and 
mapping a mobile robot in an unknown environment with 
its simultaneous positioning relative to this map [3]. When 
no other navigation capabilities, such as GNSS, are available, 
the SLAM problem becomes more important. While already 
solving the problem in simple applications, SLAM 
algorithms can be pushed to their limits by challenging 
dynamic robot motions or highly dynamic environments 
[4]. To obtain a map, sensors must be used to detect the 
structure of the environment. A variety of possible sensor 

types are available for this purpose. 
Finally, by determining the position of the environmental 

features, it is possible to obtain a representation of the 
robot's environment and thus a map that can be used in 
various ways, such as localization. The basic problem within 
SLAM is to estimate the trajectory of the robot as well as the 
position of all environmental features without knowing the 
true position of the features or the robot itself [3, 5]. LiDAR 
sensors, in particular, play a key role in sensing the 
environment of mobile systems [6, 7]. 

II. RANGE SENSING BASICS 

Range sensors are devices that capture the 3-D structure 
of surrounding objects from the sensor's perspective. They 
typically measure the distance to the nearest surfaces - that 
part of the scene is "visible" from the sensor.  There is no 
full three-dimensional observation of all sides of the scene, 
and so in the field of sensory research is increasingly talking 
about two-and-a-half dimensional (2.5-D) data. (2.5-D). 

The range data is a two-dimensional (2.5-D) or three-
dimensional representation of the environment around the 
robot. The three-dimensional aspect arises because the 
coordinates (X, Y, Z) of one or more points in the scene are 
measured. But usually, only the fronts of objects are 
observed - that part of the scene that is visible from the 
robot. Typically, we do not have a full three-dimensional 
observation of all scene sides. Hence the term "2.5-D." 

Two basic range measurement technologies exist 
triangulation and time-of-flight measurement, and there are 
multiple variations exist of each. 

A. Triangulation 

Triangulation sensors measure depth by determining the 
angle formed by rays from a world point to sensors located 
at a distance 𝑏. This so-called baseline of length 𝑏 separates 
the sensors, assuming for simplicity that one of the rays 
forms a right angle with the baseline. Angle 𝜃 of the other 
sensor ray is then related to the depth 𝑍 perpendicular to 
the baseline through the relation: 

tan 𝜃 =
𝑍

𝑏
. (1) 

An image sensor measures the angle 𝜃 by an offset in the 
image plane relative to the primary beam. This shift 𝑥 is 
denoted as misalignment. If the image plane is assumed to 
be parallel to the baseline, then tan 𝜃 = 𝑓/𝑥, and the basic 
equation of triangulation depth sensors is obtained 
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𝑍 =
𝑓𝑏

𝑥
. (2) 

B. Time of Flight 

The method used in time-of-flight (TOF) sensors is like 
that of a radar: it measures the time it takes light to reach 
an object and return. Since light travels at about 0.3 𝑚 per 
nanosecond, a very accurate TOF measurement is needed. 

As they measure time-of-flight, these sensors can 
theoretically have constant accuracy irrespective of the 
distance to the object - unlike triangulation sensors, whose 
accuracy decreases with the square of the distance to the 
object. However, TOF sensors cannot achieve the high 
accuracy of triangulation sensors for closely spaced objects, 
and so they are not typically used in close-range 
applications. 

 
1) Direct Time of Flight 

In direct TOF sensors, travel time is measured with a 
high-speed stopwatch. Direct TOF laser range sensors are 
also called LiDAR or LaDAR (laser radar sensors). The travel 
time multiplied by the speed of light (in a given medium - 
space, air, or water and corrected for the density and 
temperature of the medium) gives the distance 

2𝑑 = 𝑐𝑡, (3) 

where 𝑑 is the distance to the object, 𝑐 is the light speed, and 
𝑡 is the travel time. The error in the measurement of time 𝑡 
results in a proportional error in the distance. In practice, 
an attempt is made to measure the peak of the output pulse, 
which has a finite range; weak reflections from distant 
objects make this peak difficult to measure, and therefore 
the error tends to increase with the distance. Multiple 
readings averaging can reduce the random error in these 
measurements [8]. 

The simplest TOF sensors use only a single beam, so 
range measurements are obtained from only one point on 
the surface. Robotics applications typically need 
significantly more information. To obtain this information, 
the laser beam is moved across the stage. Typically, the 
beam is moved using a set of mirrors [8]. 

Typical ground based TOF sensors suitable for robotics 
applications have a range of 10 − 100 𝑚 and an accuracy of 
5 − 10 𝑚𝑚. The volume of the scanned scene depends on 
the speed of the moving mirrors and the pulse rate, with 
typical values 1000 − 25000 points per second. 

The scanning multibeam LiDARs can increase the amount 
of information available. Companies such as Velodyne and 
Oster produce devices with 16, 32, 64, and 128 vertically 
aligned beams that acquire point data at up to 15 𝑠𝑐𝑎𝑛𝑠/𝑠 
(1.3 𝑀𝑃𝑖𝑥𝑒𝑙/𝑠), with a full 360-inch horizontal scan and 27-
inch vertical FOV from the laser array. The laser pulse 
length is 5 𝑛𝑠 and the depth accuracy is approximately 2 𝑐𝑚. 
These devices are frequently used in environmental 
reconstruction, autonomous driving, and obstacle 
avoidance. 

 
Flash LIDAR 
Flash LIDARs have a two-dimensional detector array, 

unlike scanning devices. Instead of one or several laser 
beams, the light source pulse is shaped to cover a large area. 
All pixels start their timers when the pulse is initiated and 
measure the time it takes to receive the backscattered light. 
Typically, a few dozen samples are taken and averaged to 
reduce noise in the measurements - the amount of energy 
received is quite small since the laser is not focused on a 
beam. The pixels on the detector array are quite large 
because of the timing electronics; a typical ASC device has 
128𝑥128 pixels and can capture data at up to 60 𝐻𝑧.  These 
devices are expensive and therefore not used in consumer 
applications [8, 9].   

 
2) Indirect Time of Flight Sensors 

In indirect TOF sensors, the distance is measured and 
transit times are determined from certain properties of the 
propagating beam. The two most important methods are 
based on modulation and phase differences and signal 
intensity [8]. 

III. IMPLEMENTATION 

A. Hardware 

1) LiDAR OS1  
Fig. 1 shows the OS1 LiDAR from the company Ouster, 

which was used for this work. With the help of an interface 
box, the LiDAR sensor can be connected to a computer via a 
LAN cable. For the operation of the sensor, a 24 𝑉 power 
supply is also required. 

The Ouster LiDAR is suitable for distances between 0.3 𝑚 
to 100 𝑚 and has a vertical field of view of 45° (±22.5°). It 
has a vertical resolution of 128 lines and a configurable 
horizontal resolution of 512, 1024, or 2048 lines. 
Depending on the resolution, the LiDAR sensor can scan its 
environment at 10 𝐻𝑧 or 20 𝐻𝑧. Thus, at a resolution of 
128x2048 and the frequency of 10 𝐻𝑧, up to 2621440 
points can be captured by the sensor within one second, 
corresponding to a data rate of up to 254 𝑀𝑏/𝑠 [10].  

 

 
Fig. 1. Ouster OS1 with 128 lines [11]. 

 



Research paper         ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 16-21 
 

18 

 

For later outdoor applications, the raster size is also of 
interest. The determination of the raster size with which the 
environment is scanned, as a function of the distance, can 
be determined using trigonometric relationships. This 
relationship is shown in Fig. 2. 
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Fig. 2. Up: Horizontal distance between two laser beams as a function of 
distance; Down: Vertical field of view as a function of distance (100 m). 

 
On the one hand, the maximum distance of 100 𝑚 is 

considered, which is particularly interesting for outdoor 
applications. On the other hand, a distance of 10 𝑚 is 
considered for the indoor area. The raster values, 
depending on the resolution and the distance, are listed in 
Table 1. 

 
Table 1. Distance of the measuring points depends on the 

distance [12]. 

Alignment 
Resolution,  

points 
Field of 
view, ° 

Angle betw. 
2 beams, ° 

Distance, 
m 

Raster- 
size, cm 

Vertical 128 45 0.35 
100 61.36 

10 6.14 

 
 

 
Horizontal 

512 360 0.70 
100 122.72 

10 12.27 

1028 360 0.35 
100 61.12 

10 6.11 

2048 360 0.18 
100 30.68 

10 3.07 

 
For distances in the range of 10 𝑚, a vertical grid of 

approx. 6 𝑐𝑚 and a horizontal grid between 3 𝑐𝑚 and 12 𝑐𝑚 
is obtained. In the outdoor area, a vertical grid of approx. 
61 𝑐𝑚 and a horizontal grid between 30 𝑐𝑚 and 120 𝑐𝑚 are 
obtained. 

For indoor applications, where distances are smaller and 
there are many flat surfaces such as walls and floors, a 
horizontal resolution of 512 measurement points is 
sufficient. In the outdoor area, where there are considerably 
larger distances and increasingly complex structures such 

as trees, a horizontal resolution of 2048 measuring points 
is advantageous. This can be seen, for example, in the 
following images of the laser scanner in the indoor and 
outdoor areas (Fig. 3). 

 

 

a) 

 

b) 

Fig. 3. Laser scanning in a) indoor and b) outdoor areas with the Ouster 
LiDAR OS1. 

 
2) Husky A200 

The UGV (Unmanned Ground Vehicle) "Husky A200" 
from Clearpath Robotics, which can be seen in Fig. 4, is used 
for this work.  

The robot platform, which is equipped with an all-wheel-
drive, can be remotely controlled with the aid of a 
controller. In this chapter, the structural design of the robot 
platform is described. First, the hardware structure is 
considered. This is followed by a brief general introduction 
to ROS (Robot Operating System) and the software 
structure. 
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Fig. 4. Laser scanning in indoor and outdoor areas with the Ouster 
LiDAR OS1 [12]. 

 
A structural diagram of the hardware setup is shown in 

Fig. 5. Inside the Husky is the main computer, which 
contains the basic system for the Husky. When the rover is 
switched on, the main computer and thus all necessary 
processes are started automatically. The MCU (Motor 
Control Unit) is also connected to the Husky computer via a 
serial RS232 interface, which controls the motors of the 
robot platform and receives the odometry data [13].  

 

In addition to the main computer, there is a second 
computer (Pokini) that is connected to the main computer 
via a router. The two computers are each connected to 
different sensors and have the necessary software packages 
accordingly. A GPS (Global Positioning System) module is 
connected to the Husky as well as the 128 lines LiDAR OS1 
from Ouster. The Pokini is equipped with an IMU (Inertial 
Measurement Unit) from X-sense for inertial data 
acquisition and an RTK-GPS (Real-Time Kinematic-GPS) 
from u-blox. This will later be used as a reference to 
evaluate the accuracy of the trajectory estimation. The two 
computers can be accessed and communicated with via the 
WLAN router using an SSH connection. 

B. Software 

ROS is used as the framework for exchanging messages 
and controlling the Husky. In the following, the functionality 
of ROS is described first and then the structure of the ROS 
network of this robot platform is described. 

 
1) Robot Operating System (ROS) 

ROS (Robot Operating System) is an open-source 
platform for programming robot systems. It is a meta-
operating system that provides various tools for simulation 
and visualization as well as libraries. The libraries mainly 
include hardware abstractions as well as device drivers for 
sensors and actuators [14].  

ROS is a peer-to-peer network, which means that all 
participants have equal rights and that services can be 
offered and used. The individual participants can be 
distributed over several computers, whereby they are 
loosely coupled by the ROS communication infrastructure. 
To organize communication, there is exactly one master in 
each ROS network that manages communication and with 

which each node must be registered, as illustrated in Fig. 6.  
 

ROS nodes represent programs executable via a 
terminal, which can be compiled, executed, and managed 
individually. The organization of the Nodes takes place in 
packages, which contain the source code, Launch files, and 
configuration files [14, 15] .  
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Fig. 5. The hardware structure of the robot platform (based on [13]). 
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Fig. 6. Structural organization of ROS [14]. 
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The nodes communicate with each other via so-called 
topics. Each node can publish different topics or subscribe 
to topics that are of interest to it. For example, sensor data 
can be shared via a topic and subscribed to by the nodes that 
require this sensor information. 

 
2) ROS structure Husky 

When the Husky is started, a ROS core, which represents 
the master, is automatically started on the Husky computer. 
All necessary ROS packages that are required for the 
operation of the Husky are executed. If the corresponding 
sensors are to be started or used, they must be started 
manually, for example via an SSH connection, on the 
respective computer on which the corresponding software 
packages are installed. For example, the node of the Ouster 
LiDAR sensor is started on the Husky computer. The exact 
description of which packages can be started on which 
computer and how is given in the GitLab repository. Finally, 
the hardware setup, as described in Fig. 5, allows for 
subscribing or publishing the desired topics from any 
computer, enabling easy cross-network data exchange. 

IV. EXPERIMENTAL RESULTS WITH HDL_GRAPH_SLAM 

A. The parking lot of the University of Offenburg 

The first outdoor test was recorded in the parking lot of 
Offenburg University. On the day of the test, the parking lot 
was sparsely filled with cars, as can be seen in Fig. 7.  

 

Fig. 7. Trajectories of the different scan matching methods (FAST_GICP, 
FAST_VGICP, and RTK GPS as ground truth) in the parking lot of the 
Offenburg University. 

The parking lot is almost flat and very wide so that only 
ground surfaces are detected near the Husky robot, and 
trees and buildings can be detected by the LiDAR sensor 
from approx. 40 m. The LiDAR sensor is also able to detect 
trees and buildings. As a ground truth (reference), the 
trajectory was also determined using an RTK GPS. For this 
purpose, the base station was calibrated at the position of 
the car at the starting point. The RTK GPS can achieve the 
accuracy of 2 𝑐𝑚 when the base station is calibrated. The 
total distance of the trajectory is 180 𝑚 with a duration of 
223 𝑠. 

For verification, different scan matching methods for 
odometry determination are tested again. As in the indoor 

area, FAST_GICP and FAST_VGICP were shown to be the 
most suitable for this application. While the hdl_graph_slam 
with NDT_OMP deviates significantly from the ground truth 
up to the first loop closure, the deviation of the 
hdl_graph_slam with the other two algorithms is a 
maximum of 20 𝑐𝑚 (Fig. 8).  

 

Fig. 8. Left: Trajectories of the different scan matching methods 
(FAST_GICP, FAST_VGICP, NDT_OMP, and RTK GPS as ground truth) in the 
parking lot of the University of Offenburg. Right: Trajectory with four loop 
closures found. 

 
After the first Loop Closure, the deviation is reduced to 

2 𝑐𝑚 with all scan matching algorithms. In the second loop, 
the deviation with NDT_OMP is up to 3 𝑚, but decreases 
again to a maximum of 1 m at the second loop closure. With 
FAST_GICP and FAST_VGICP, the deviation is 50 𝑐𝑚 at the 
most and decreases again at the Loop Closure at the end to 
20 𝑐𝑚 at the most . The loop closures found by 
hdl_graph_slam can be seen on the right-hand side in Fig. 8. 

B. Check of the altitude course  

In addition to the trajectory, the altitude course is also 
checked. The RTK GPS cannot be used as a reference, since 
its elevation values vary by several meters (Fig. 9, b) and this 
is a flat parking lot. The values of the hdl_graph_slam, 
however, only vary by ±5 cm. 

 

 

Fig. 9. Elevation course of the trajectory of the different scan matching 
methods (FAST_GICP, FAST_VGICP, and NDT_OMP) on the parking lot of 

the University of Offenburg. 
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Fig. 10.  Altitude course of the RTK GPS (red). 

V. CONCLUSION 

This paper presents a system for the implementation and 
evaluation of complex localization and mapping 
procedures. The considered methods are suitable for 
reliable localization in complex scenarios, such as logistics 
applications in Industry 4.0, exploration and sensing in field 
robotics, or applications in service robotics. 

Currently, a major problem is the precise positioning of 
mobile systems, which is a prerequisite for any autonomous 
behavior in industrial environments and field robotics.  The 
paper describes the setup of an experimental platform and 
its use for the evaluation of SLAM algorithms 

With each scan of a LiDAR sensor, a point cloud with 
measurement points is obtained, as shown in the previous 
chapter. To be able to use these point clouds for mapping or 
localization in a map, the challenge is to "match" the current 
scan with an already known scan of the surrounding area. 
The process of matching two scans is also called 
registration. There are different scanmatching algorithms 
for registration.  

Among the most common are the Iterative Normal 
Distribution Transform (NDT), Closest Point (ICP), and 
Voxelized Generalized Iterative Closest Point (VGICP) 
algorithms. In the next stages of the study, different 
algorithms will be investigated and compared in indoor and 
outdoor spaces. 
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