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Abstract— Much effort has been devoted in transferring 
efficiently different Machine Learning (ML) algorithms and 
especially Deep Neural Networks (DNNs) to edge devices in 
order to fulfill real-time, storage and energy consumption 
issues, among others. Limited resources of edge devices and 
the necessity for energy saving to lengthen the durability of 
their batteries, has emerged an interesting trend on reducing 
neural networks and graphs while keeping almost untouched 
their predictability. In this work, latest works on this area are 
compared and analyzed in depth seeking to figure out the best 
techniques to reduce the dimension of those algorithms and 
maintain their ability at predicting.  Most interesting ways of 
enhancing those skills are discussed, as well. 
 
Keywords— Artificial Intelligence, Edge Computing, Graph 

Reduction, pruning. 

I. INTRODUCTION 

 The use of DNNs in different scenery such as image 
classification, voice synthesis or object detection is 
undoubtedly one of the most effective ways to make 
predictions. The development of DNNs during the last years 
has evolved in such a way that nowadays neural network 
designs have billions of parameters with great capability of 
prediction, thus needing significant computation resources. 
Starting from huge amounts of data to be stored safely to 
powerful computation units, those could not be satisfied by 
current edge device by now. However, by reducing the size 
of these architectures in an efficient way it could be feasible 
their deployment in embedded systems. 
 Among others the most used and effective way to shrink 
these networks is the use of techniques such as pruning and 
quantization. The former one consists in removing 
parameters (neurons or weights) that have negligible 
contribution while maintaining the accuracy of the 
classifier. On the other hand, quantization involves 
replacing datatypes to reduced width datatypes, by 
transforming data to fit in new datatypes’ shapes. By this 
way, reduced networks are able to compete with the 
original ones in terms of accuracy, even improving these in 
some cases in which overfitting issues were hindering their 
predictability. Moreover, by reducing the width of data edge 
devices could face the storage issue mentioned above and 
collect larger datasets in constrained memory sizes. 
 In this work different attempts to optimize these 
reduction techniques are described as well as possible 
future works that could be proposed to achieve even better 
results. The rest of this paper is organized as follows:  

section II introduces and analyzes the pruning process and 
most significant and attractive approaches made so far, 
section III does the same in case of quantization, and finally 
section IV concludes and outlines possible future research 
lines. 

II. PRUNING 

 Pruning consists in removing part of connections(weights) or 

neurons from the original network so as to reduce the dimension 

of the original structure by maintaining its ability to predict. The 

core of this technique resides on the redundancy that some 

elements add to the entire architecture. Memory size and 

bandwidth reduction are addressed with this technique. 

Redundancy is lowered and overfitting is faced in some 

scenarios. Different classifications of works based on this 

ability are made depending on: 

 

 Element pruned. 

 Structured / Unstructured 

 Static / Dynamic 

Figure 1: Different approaches for pruning. Source: 

https://towardsdatascience.com/ pruning-deep-neural-network-
56cae1ec5505  

 

 The element pruned can be either a connection or a neuron in 

a pruning process. The difference between structured and 

unstructured pruning lies on whether the pruned network is 

symmetric or not. When we talk about static pruning we refer 

to the process in which all pruning steps are made before the 

inference time, while the dynamic pruning is performed during 

runtime. 

A.  Static Pruning 

 Static pruning is the process of removing elements of a 

network structure offline before training and inference 

processes. During these last processes no changes are made to 

the network previously modified. However, after removing 

different elements of the architecture it is interesting a fine-
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tuning or retraining of the pruned network. This is due to the 

changes that suffer the network by removing big part of its 

elements. Thus, some computational effort is needed in order to 

reach comparable accuracy to the original network. 

 The pruning has been carried out by following different 

criteria. Some works have based on the magnitude of the 

elements themselves. It is undoubtedly true that near-zero 

values of weights make far less contribution to the results than 

others that surpass certain threshold value. By this way, 

removing connections that may appear unneeded the original 

network is shrunk. It is an interesting approach to develop this 

process layer-by-layer to not affect brutely to the performance 

of the resulting network. Because by removing elements of the 

entire network some connections or neurons may take different 

role in the resulting network, thus being interesting some fine-

tuning or retraining. 

 In [1, 2] they used the second derivative of the Hessian 

matrix to reduce the dimension of the original architecture. 

Optimal Brain Damage (OBD) and Optimal Brain Surgeon 

(OBS) respectively function under three assumptions. 

Quadratic: the cost function is near quadratic. Extremal: the 

pruning is done after the network converged. Diagonal: sums 

up the error of individual weights by pruning the result of the 

error caused by their co-consequence. Additionally, OBS 

avoids the diagonal assumption and improves neuron removal 

precision by up to 90% reduction in weights for XOR networks. 

Taylor expansions of first order where also considered to reduce 

the network dimension in [3, 4], as a criterion to approximate 

the change of loss in the objective function as an effect of 

pruning. 

 Some other works have followed the idea of removing 

elements based on different penalization terms. Penalty-based 

training aims to modify or add an error function to modify 

weights during training process using a penalty value. At the 

end, near-zero values are pruned from the original network. 

LASSO [5] was introduced as a penalty term. It shrinks the least 

absolute valued feature’s corresponding weights increasing 

weight sparsity. This operation has been shown to offer a better 

performance than traditional procedures such as OLS by 

selecting the most significantly contributed variables instead of 

using all the variables, achieving approximately 60% more 

sparsity than OLS. The problem with LASSO is that is an 

element-wise pruning technique leading to unstructured 

network and sparse weight matrices. By performing this 

technique group-wise as it does Group LASSO [6] removing 

entire groups of neurons and maintaining the original network’s 

structure. Groups are made based on geometry, computational 

complexity or group sparsity among others. 

 Other alternatives have been proposed to carry out static 

pruning. In [7] was proposed a novel criterion for 

Convolutional Neural Network (CNN) pruning called Layer-

wise relevance propagation. It is measured the contribution of 

each unit to the relevance of the decision making. By this way, 

the units that are below a predefined threshold are removed 

from the graph and finally the relevance of each unit is 

recomputed. For this last step, the total relevance per layer is 

calculated so that to keep it untouched during iterations. Thus, 

each unit’s relevance is recalculated to maintain this value. 

 In [8] a technique to prune redundant features along with 

their related feature maps according to their relative cosine 

distances in the feature space is proposed, thus leading to 

smaller networks with reduced post-training inference 

computational costs and competitive performance. Redundancy 

can be reduced while inference cost (FLOPS) is reduced by 

40% for VGG-16, 28%/39% for ResNet-56/110 models trained 

on CIFAR-10, and 28% for ResNet-34 trained on ImageNet 

database with minor loss of accuracy. To recover the accuracy 

after pruning, models were finetuned for a few iterations 

without the need to modify hyper-parameters. 

 

 
 

Figure 2: Architecture of the proposed approach Sparse Low Rank 
Decomposition in [9]. 

 

 In [9] combining the ideas of sparsity and existence of un- 

equal contributions of neurons towards achieving the target, 

sparse low rank (SLR) method is presented, which sparsifies 

Single Value Decomposition (SVD) matrices to achieve better 

compression rate by keeping lower rank for unimportant 

neurons. By this way, it is possible to save 3.6 ×storage space 

of SVD without much effect on the model performance. The 

structured sparsity achieved by the proposed approach has also 

the advantage of speedup in the computation. 

 Another interesting approach to be taken into consideration 

is pruning filter-by-filter. Filter-wise pruning [10] uses the l1-

norm to remove filters that do not affect the accuracy of the 

classification. Pruning entire filters and their related feature 

maps resulted in a reduced inference cost of 34% for VGG-16 

model and 38% for ResNet-110 model on the CIFAR-10 dataset 

with improved accuracy 0.75% and 0.02%, respectively. 

ThiNet [11] adopts statistics information from the next layer to 

determine the importance of each filter. It uses a greedy search 

to prune the channel that has the smallest reconstruction cost in 

the next layer. During each training pruning is carried out more 

lightly to allow for coefficient stability. The pruning ratio is a 

predefined hyper-parameter and the runtime complexity is 

directly related to the pruning ratio. ThiNet compressed 

ResNet-50 FLOPs to 44.17% with a top-1 accuracy reduction 

of 1.87%. 

 Other research has been carried out attending activations, that 

may also be indicators to prune corresponding weights. 

Average Percentage of Zeros (APoZ) [12] was introduced to 

judge if one output activation map is contributing to the result. 

Some activation functions, particularly rectification functions 

such as Rectified Linear Unit (ReLU), may result in a high 

percentage of zeros in activations, being interesting their 

pruning. 

 After applying different techniques to reduce the amount of 

non-relevant elements from the original structure, it is essential 

a fine-tuning or retraining phase. It is shown [8] that by training 

a pruned structure from scratch less accurate results are 

obtained compared to the retraining processes in which weights 

from the original network are maintained for the new training 

phase. That is why iteratively a retraining or fine-tuning step is 
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followed after each pruning step is carried out. This iterative 

process is repeated until a desired number of elements is 

achieved. 

B.  Dynamic Pruning 

 Pruning a DNN dynamically offers several benefits 

compared to the same process carried out offline before both 

training and inference processes. Identifying at runtime which 

elements of the original structure are relevant and which ones 

are not, offers the possibility of solving different issues related 

with static pruning by adapting the network with the changes of 

input data. 

 This process is far more complex than the static one, so that 

various decisions are needed to make before starting it. In some 

cases makes sense considering additional networks or 

connections to further assist pruning process. Information input 

could be either layer-by-layer feeding a window of data 

iteratively to the decision system or by one-shot feeding. As 

well as in the static pruning, a score system and a comparative 

system (automatic or manual) must be established. Similarly, a 

stopping criterion must be imposed, and finally, the additional 

components have to be trained at the same time the network has 

been trained. 

 A negative impact to the system computation requirements is 

also needed to be taken into account. Additional bandwidth, 

computation and power resources are necessary while 

computing at runtime which elements to be pruned. At the same 

time, convolution operations with large number of features 

consume huge part of the bandwidth. Thus, a trade-off between 

dynamic pruning overhead, reduced network computation, and 

accuracy loss, should be considered. Different approaches have 

been developed during recent years, and the most significant 

ones are described below. 

 In [13, 14] they focused on conditional computing by 

activating relevant parts of the original network. The non-

activated elements act as pruned ones enlightening the original 

structure. 

 The main advantage that dynamic pruning offers is the 

capacity of adapting the pruned network at runtime. By 

obtaining intermediate trained models while carrying out the 

whole process is an interesting way of applying a trade-off 

between accuracy and computation cost. In [15,16, 17] different 

alternatives of cascade networks were proposed. A cascade 

network consists of a series of networks that each of them has 

its output layer, instead of offering an output per-layer. Its main 

advantage is that it could offer an early exit if desired accuracy 

is achieved. On the contrary, some hyper-parameters need to be 

tuned manually. Moreover, in [18] Blockdrop was introduced 

as an Reinforcement Learning method that with an input image 

was able to deduce which blocks should participate in the whole 

process. They were able to achieve an average speed-up of 20% 

on ResNet-101 for ILSVRC- 2012 without accuracy loss. On 

the other hand, Runtime Neural Pruning (RNP) was proposed 

[19] based on a feature selection problem as a Markov Decision 

Problem (MDP) finding computation efficiency. A Recursive 

Neural Network (RNN) based network was used to predict 

which feature maps were necessary. They found 2.3x to 5.9x 

reduction in execution time with top-5 accuracy loss from 

2.32% to 4.89% for VGG-16. 

 In [20] a novel dynamic pruning technique based on pruning 

and splicing was presented. On the one hand, pruning 

operations can be performed whenever the existing connections 

seem to become unimportant. On the other hand, the mistakenly 

pruned connections shall be re-established if they once appear 

to be important (splicing). Experimental results show that their 

method compressed the number of parameters in LeNet-5 and 

AlexNet by a factor of 108x and 17.7x, respectively, with a 

better learning efficiency. 

 The negative point of RL techniques is their computation 

expense. Alternatively, differentiable approaches have been 

made to solve this issue. Using Dynamic Channel Pruning 

(DCP) in [21] they proposed a side network called Feature 

Boosting and Suppression (FBS) to decide which channel to 

skip. FBS achieved 5x acceleration on VGG-16 with 0.59% 

ILSVRC-2012 top-5 accuracy loss, and 2x acceleration on 

ResNet-18 with 2.54% top-1, 1.46% top-5 accuracy loss. 

Similarly, in [22] a channel-threshold weighting decision (T-

Weighting) was used to prune dynamically channels. A T-

sigmoid activation function, using as its entry a downsampling 

from a Fully Connected Layer (FCL), was used to calculate 

channels’ score and decide which ones to prune. 

 Another interesting approach has been proposed in [23] to 

prune dynamically CNNs. They explore the manifold 

information in the sample space to discover the relationship 

between different instances from two perspectives, i.e., 

complexity and similarity, and then the relationship is preserved 

in the corresponding sub-networks. An adaptive penalty weight 

for network sparsity is developed to align the instance 

complexity and network complexity, while the similarity 

relationship is preserved by matching the similarity matrices. 

Extensive experiments are conducted on several benchmarks to 

verify the effectiveness of this method. Compared with the 

state-of-the-art methods, the pruned networks obtained by this 

method can achieve better performance with less computational 

cost. For example, they can reduce 55.3% FLOPs of ResNet-34 

with only 0.57% top-1 accuracy drop in ImageNet. 

 

 
Figure 3: diagram of the architecture proposed in [23]. 

III. QUANTIZATION 

 Reducing the number of bytes used to represent data is 

crucial when transferring ML algorithms to resource 

constrained edge devices. When we mention quantization, we 

refer to the transformation of data from floating point 

representation to a determined value range. These former data 

could be either represented by predefined values or symbols. In 

the context of DNNs weights may be quantized by clustering 

processes, by lookup tables or using linear functions, all of them 

with the aim of reducing information width of data. Originally, 

most of the DNNs applied 32-bit floating point representation 

for weight parameters, but in most cases this falls excessive. In 

fact, 8-bit values can accelerate significantly inference process 

without observable loss in accuracy. Different alternatives have 
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been adopted in recent years, and some of the most interesting 

ones are described and analyzed below. 

 In [24] they conduct extensive experiments using 

incremental quantization on three applications: medical image 

segmentation, image classification, and automatic speech 

recognition. The main goal of incremental quantization is to 

convert 32-bit-floating-point weights (W) into low precision 

weights W’ either power of 2 or zero with minimum accuracy 

loss. Each of W’ is chosen from Pl = {±2n1, . . . , ±2n2 },  here 

n1 and n2 are two integer numbers determined by the max 

absolute value of W of each layer and expected quantized bit-

width, and n2 ≤ n1. Experimental results in FCN for biomedical 

image segmentation, CNN for image classification, and RNN 

for automatic speech recognition, show that incremental 

quantization can improve accuracy by 1%, 1.95%, and 4.23% 

on the three applications, respectively, with 3.5x to 6.4x 

memory reduction. 

 An adaptive quantization method was introduced [25] to 

enhance quantization results on MNIST, CIFAR-10 and SVHN 

datasets, finding a unique, optimal precision for each network 

parameter such that the increase in loss is minimized. Pruning 

unnecessary parameters or quantizing them they showed DNN 

model sizes can be reduced significantly without loss of 

accuracy. The resulting models were significantly smaller than 

state-of-the-art quantization technique. 

 Following the trend of mixing pruning and quantization 

techniques, in [26] they presented a training acceleration 

framework able to speed up training process while compressing 

DNN for mitigating transmission overhead. FL-PSQU is a 

Federated Learning mechanism that is divided in three steps. 

First, a one-shot pruning is done by the server to generate 

general models for all clients and after quantizing it, it is 

transferred to each client. Then, each client updates its model 

and depending on its update’s significance it is transmitted to 

the server or not, avoiding unnecessary communications by this 

way. 

 Other simpler approaches have been made that include 

binary and ternary quantization. Thus, only two or three 

possible values were assigned to each element of the 

architecture, with a vast reduction in memory size and 

computation effort. However, accuracy loss is not negligible in 

these techniques due to the hard generalization of weights. 

Binary Connect [27] used stochastic plus-minus quantization by 

assigning +1 to positive valued weights and -1 to negative 

valued ones with hard sigmoid probability σ(x) and 1- σ(x), 

respectively. Similarly, in [28] they binarized all weights of 

different architectures and afterward multiply with a scaling 

factor for all the weights of a layer. In [29, 30] showed the 

power of ternary quantization by including additional value (-

1, 0 and +1) compared to the binary case. Its implementation in 

hardware must be efficient due to the fact that 0 value does not 

actually participate in computations. Ternary Weight Networks 

(TWN) adopts the l2-distance to find the scale and formats the 

weights into -1, 0 and +1 with a threshold generated by an 

assumption that the weighs are uniformly distributed such as in 

[-a, a]. This resulted in up to 16x model compression with 3.6% 

ResNet-18 top-1 accuracy loss on ILSVRC-2012. 

 In some scenarios could be of special interest the conversion 

of floating-point multiplication to bit-shift operations, such as 

in case of FPGAs. Here, the constraint for weights for being 

power of two, leverages training and inference effort and time. 

This approach was proposed in [31] by quantizing the 

representation of weights layer-by-layer. Likewise, Incremental 

Network Quantization [32] replaces all weights with powers of 

2 iteratively, preserving in each iteration some weights in full 

precision and retraining them. After multiple iterations majority 

of the weights are converted to power-of-two. The final 

structure has weights from 2 to 5 bits with values near zero set 

to zero. Results of group-wise iterative quantization show lower 

error rates than a random power-of-two strategy. 

IV. CONCLUSION AND FUTURE WORK 

 Among different approaches that have been made so far in 

the literature to reduce the dimension of the original network 

size and optimize inference time, memory usage and 

computational cost, the ones mentioned above are the most 

interesting ones from our point of view. When transferring deep 

networks usually trained on cloud to edge devices, it is of great 

interest a reduction in network size to adapt these architectures 

to the constraints of such devices. Thus, pruning original 

network is undoubtedly an essential step to fit deep models in 

resource constrained devices. Dynamic pruning offers the 

possibility of removing unnecessary elements of the network at 

inference time, thus, offering way of achieving the most 

accurate reduction for the input data. In fact, these techniques 

are computationally more expensive than the static ones, and 

quite a bit complex. For some applications some approaches 

will suit better than others and it is up to the final user the 

election among them. However, achieving a computationally 

effortless way of pruning networks dynamically would be an 

interesting future research line. 

 On the other hand, quantization techniques would not be 

underestimated specially when transferring models to 

microcontrollers that lack of operating systems. Specially when 

those microcontrollers own FPGAs, a conversion from floating-

point multiplications to bit-shift operation could alleviate a 

great computational cost and reduce runtime, as well. In the 

majority of scenarios reducing the number of representative bits 

to 8 is enough for avoiding a significant loss in terms of 

accuracy while reducing vastly memory usage. Nonetheless, 

some other approaches like binary quantization are too hard in 

many cases leading to a excessive accuracy drop. 
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