
Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 11-15

11

Abstract— Much effort has been devoted in transferring
efficiently different Machine Learning (ML) algorithms and
especially Deep Neural Networks (DNNs) to edge devices in
order to fulfill real-time, storage and energy consumption
issues, among others. Limited resources of edge devices and
the necessity for energy saving to lengthen the durability of
their batteries, has emerged an interesting trend on reducing
neural networks and graphs while keeping almost untouched
their predictability. In this work, latest works on this area are
compared and analyzed in depth seeking to figure out the best
techniques to reduce the dimension of those algorithms and
maintain their ability at predicting. Most interesting ways of
enhancing those skills are discussed, as well.

Keywords— Artificial Intelligence, Edge Computing, Graph

Reduction, pruning.

I. INTRODUCTION

 The use of DNNs in different scenery such as image
classification, voice synthesis or object detection is
undoubtedly one of the most effective ways to make
predictions. The development of DNNs during the last years
has evolved in such a way that nowadays neural network
designs have billions of parameters with great capability of
prediction, thus needing significant computation resources.
Starting from huge amounts of data to be stored safely to
powerful computation units, those could not be satisfied by
current edge device by now. However, by reducing the size
of these architectures in an efficient way it could be feasible
their deployment in embedded systems.
 Among others the most used and effective way to shrink
these networks is the use of techniques such as pruning and
quantization. The former one consists in removing
parameters (neurons or weights) that have negligible
contribution while maintaining the accuracy of the
classifier. On the other hand, quantization involves
replacing datatypes to reduced width datatypes, by
transforming data to fit in new datatypes’ shapes. By this
way, reduced networks are able to compete with the
original ones in terms of accuracy, even improving these in
some cases in which overfitting issues were hindering their
predictability. Moreover, by reducing the width of data edge
devices could face the storage issue mentioned above and
collect larger datasets in constrained memory sizes.
 In this work different attempts to optimize these
reduction techniques are described as well as possible
future works that could be proposed to achieve even better
results. The rest of this paper is organized as follows:

section II introduces and analyzes the pruning process and
most significant and attractive approaches made so far,
section III does the same in case of quantization, and finally
section IV concludes and outlines possible future research
lines.

II. PRUNING

 Pruning consists in removing part of connections(weights) or

neurons from the original network so as to reduce the dimension

of the original structure by maintaining its ability to predict. The

core of this technique resides on the redundancy that some

elements add to the entire architecture. Memory size and

bandwidth reduction are addressed with this technique.

Redundancy is lowered and overfitting is faced in some

scenarios. Different classifications of works based on this

ability are made depending on:

 Element pruned.

 Structured / Unstructured

 Static / Dynamic

Figure 1: Different approaches for pruning. Source:

https://towardsdatascience.com/ pruning-deep-neural-network-
56cae1ec5505

 The element pruned can be either a connection or a neuron in

a pruning process. The difference between structured and

unstructured pruning lies on whether the pruned network is

symmetric or not. When we talk about static pruning we refer

to the process in which all pruning steps are made before the

inference time, while the dynamic pruning is performed during

runtime.

A. Static Pruning

 Static pruning is the process of removing elements of a

network structure offline before training and inference

processes. During these last processes no changes are made to

the network previously modified. However, after removing

different elements of the architecture it is interesting a fine-

Reviewing and discussing Graph reduction for prediction in the
Edge Computing context

Asier Garmendia-Orbegozo (1), J. David Núñez-González (1), Miguel Angel Antón González (2)
 (1) Department of Applied Mathematics, University of the Basque Country (UPV/EHU) Eibar, Spain

(2) TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 11-15

12

tuning or retraining of the pruned network. This is due to the

changes that suffer the network by removing big part of its

elements. Thus, some computational effort is needed in order to

reach comparable accuracy to the original network.

 The pruning has been carried out by following different

criteria. Some works have based on the magnitude of the

elements themselves. It is undoubtedly true that near-zero

values of weights make far less contribution to the results than

others that surpass certain threshold value. By this way,

removing connections that may appear unneeded the original

network is shrunk. It is an interesting approach to develop this

process layer-by-layer to not affect brutely to the performance

of the resulting network. Because by removing elements of the

entire network some connections or neurons may take different

role in the resulting network, thus being interesting some fine-

tuning or retraining.

 In [1, 2] they used the second derivative of the Hessian

matrix to reduce the dimension of the original architecture.

Optimal Brain Damage (OBD) and Optimal Brain Surgeon

(OBS) respectively function under three assumptions.

Quadratic: the cost function is near quadratic. Extremal: the

pruning is done after the network converged. Diagonal: sums

up the error of individual weights by pruning the result of the

error caused by their co-consequence. Additionally, OBS

avoids the diagonal assumption and improves neuron removal

precision by up to 90% reduction in weights for XOR networks.

Taylor expansions of first order where also considered to reduce

the network dimension in [3, 4], as a criterion to approximate

the change of loss in the objective function as an effect of

pruning.

 Some other works have followed the idea of removing

elements based on different penalization terms. Penalty-based

training aims to modify or add an error function to modify

weights during training process using a penalty value. At the

end, near-zero values are pruned from the original network.

LASSO [5] was introduced as a penalty term. It shrinks the least

absolute valued feature’s corresponding weights increasing

weight sparsity. This operation has been shown to offer a better

performance than traditional procedures such as OLS by

selecting the most significantly contributed variables instead of

using all the variables, achieving approximately 60% more

sparsity than OLS. The problem with LASSO is that is an

element-wise pruning technique leading to unstructured

network and sparse weight matrices. By performing this

technique group-wise as it does Group LASSO [6] removing

entire groups of neurons and maintaining the original network’s

structure. Groups are made based on geometry, computational

complexity or group sparsity among others.

 Other alternatives have been proposed to carry out static

pruning. In [7] was proposed a novel criterion for

Convolutional Neural Network (CNN) pruning called Layer-

wise relevance propagation. It is measured the contribution of

each unit to the relevance of the decision making. By this way,

the units that are below a predefined threshold are removed

from the graph and finally the relevance of each unit is

recomputed. For this last step, the total relevance per layer is

calculated so that to keep it untouched during iterations. Thus,

each unit’s relevance is recalculated to maintain this value.

 In [8] a technique to prune redundant features along with

their related feature maps according to their relative cosine

distances in the feature space is proposed, thus leading to

smaller networks with reduced post-training inference

computational costs and competitive performance. Redundancy

can be reduced while inference cost (FLOPS) is reduced by

40% for VGG-16, 28%/39% for ResNet-56/110 models trained

on CIFAR-10, and 28% for ResNet-34 trained on ImageNet

database with minor loss of accuracy. To recover the accuracy

after pruning, models were finetuned for a few iterations

without the need to modify hyper-parameters.

Figure 2: Architecture of the proposed approach Sparse Low Rank
Decomposition in [9].

 In [9] combining the ideas of sparsity and existence of un-

equal contributions of neurons towards achieving the target,

sparse low rank (SLR) method is presented, which sparsifies

Single Value Decomposition (SVD) matrices to achieve better

compression rate by keeping lower rank for unimportant

neurons. By this way, it is possible to save 3.6 ×storage space

of SVD without much effect on the model performance. The

structured sparsity achieved by the proposed approach has also

the advantage of speedup in the computation.

 Another interesting approach to be taken into consideration

is pruning filter-by-filter. Filter-wise pruning [10] uses the l1-

norm to remove filters that do not affect the accuracy of the

classification. Pruning entire filters and their related feature

maps resulted in a reduced inference cost of 34% for VGG-16

model and 38% for ResNet-110 model on the CIFAR-10 dataset

with improved accuracy 0.75% and 0.02%, respectively.

ThiNet [11] adopts statistics information from the next layer to

determine the importance of each filter. It uses a greedy search

to prune the channel that has the smallest reconstruction cost in

the next layer. During each training pruning is carried out more

lightly to allow for coefficient stability. The pruning ratio is a

predefined hyper-parameter and the runtime complexity is

directly related to the pruning ratio. ThiNet compressed

ResNet-50 FLOPs to 44.17% with a top-1 accuracy reduction

of 1.87%.

 Other research has been carried out attending activations, that

may also be indicators to prune corresponding weights.

Average Percentage of Zeros (APoZ) [12] was introduced to

judge if one output activation map is contributing to the result.

Some activation functions, particularly rectification functions

such as Rectified Linear Unit (ReLU), may result in a high

percentage of zeros in activations, being interesting their

pruning.

 After applying different techniques to reduce the amount of

non-relevant elements from the original structure, it is essential

a fine-tuning or retraining phase. It is shown [8] that by training

a pruned structure from scratch less accurate results are

obtained compared to the retraining processes in which weights

from the original network are maintained for the new training

phase. That is why iteratively a retraining or fine-tuning step is

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 11-15

13

followed after each pruning step is carried out. This iterative

process is repeated until a desired number of elements is

achieved.

B. Dynamic Pruning

 Pruning a DNN dynamically offers several benefits

compared to the same process carried out offline before both

training and inference processes. Identifying at runtime which

elements of the original structure are relevant and which ones

are not, offers the possibility of solving different issues related

with static pruning by adapting the network with the changes of

input data.

 This process is far more complex than the static one, so that

various decisions are needed to make before starting it. In some

cases makes sense considering additional networks or

connections to further assist pruning process. Information input

could be either layer-by-layer feeding a window of data

iteratively to the decision system or by one-shot feeding. As

well as in the static pruning, a score system and a comparative

system (automatic or manual) must be established. Similarly, a

stopping criterion must be imposed, and finally, the additional

components have to be trained at the same time the network has

been trained.

 A negative impact to the system computation requirements is

also needed to be taken into account. Additional bandwidth,

computation and power resources are necessary while

computing at runtime which elements to be pruned. At the same

time, convolution operations with large number of features

consume huge part of the bandwidth. Thus, a trade-off between

dynamic pruning overhead, reduced network computation, and

accuracy loss, should be considered. Different approaches have

been developed during recent years, and the most significant

ones are described below.

 In [13, 14] they focused on conditional computing by

activating relevant parts of the original network. The non-

activated elements act as pruned ones enlightening the original

structure.

 The main advantage that dynamic pruning offers is the

capacity of adapting the pruned network at runtime. By

obtaining intermediate trained models while carrying out the

whole process is an interesting way of applying a trade-off

between accuracy and computation cost. In [15,16, 17] different

alternatives of cascade networks were proposed. A cascade

network consists of a series of networks that each of them has

its output layer, instead of offering an output per-layer. Its main

advantage is that it could offer an early exit if desired accuracy

is achieved. On the contrary, some hyper-parameters need to be

tuned manually. Moreover, in [18] Blockdrop was introduced

as an Reinforcement Learning method that with an input image

was able to deduce which blocks should participate in the whole

process. They were able to achieve an average speed-up of 20%

on ResNet-101 for ILSVRC- 2012 without accuracy loss. On

the other hand, Runtime Neural Pruning (RNP) was proposed

[19] based on a feature selection problem as a Markov Decision

Problem (MDP) finding computation efficiency. A Recursive

Neural Network (RNN) based network was used to predict

which feature maps were necessary. They found 2.3x to 5.9x

reduction in execution time with top-5 accuracy loss from

2.32% to 4.89% for VGG-16.

 In [20] a novel dynamic pruning technique based on pruning

and splicing was presented. On the one hand, pruning

operations can be performed whenever the existing connections

seem to become unimportant. On the other hand, the mistakenly

pruned connections shall be re-established if they once appear

to be important (splicing). Experimental results show that their

method compressed the number of parameters in LeNet-5 and

AlexNet by a factor of 108x and 17.7x, respectively, with a

better learning efficiency.

 The negative point of RL techniques is their computation

expense. Alternatively, differentiable approaches have been

made to solve this issue. Using Dynamic Channel Pruning

(DCP) in [21] they proposed a side network called Feature

Boosting and Suppression (FBS) to decide which channel to

skip. FBS achieved 5x acceleration on VGG-16 with 0.59%

ILSVRC-2012 top-5 accuracy loss, and 2x acceleration on

ResNet-18 with 2.54% top-1, 1.46% top-5 accuracy loss.

Similarly, in [22] a channel-threshold weighting decision (T-

Weighting) was used to prune dynamically channels. A T-

sigmoid activation function, using as its entry a downsampling

from a Fully Connected Layer (FCL), was used to calculate

channels’ score and decide which ones to prune.

 Another interesting approach has been proposed in [23] to

prune dynamically CNNs. They explore the manifold

information in the sample space to discover the relationship

between different instances from two perspectives, i.e.,

complexity and similarity, and then the relationship is preserved

in the corresponding sub-networks. An adaptive penalty weight

for network sparsity is developed to align the instance

complexity and network complexity, while the similarity

relationship is preserved by matching the similarity matrices.

Extensive experiments are conducted on several benchmarks to

verify the effectiveness of this method. Compared with the

state-of-the-art methods, the pruned networks obtained by this

method can achieve better performance with less computational

cost. For example, they can reduce 55.3% FLOPs of ResNet-34

with only 0.57% top-1 accuracy drop in ImageNet.

Figure 3: diagram of the architecture proposed in [23].

III. QUANTIZATION

 Reducing the number of bytes used to represent data is

crucial when transferring ML algorithms to resource

constrained edge devices. When we mention quantization, we

refer to the transformation of data from floating point

representation to a determined value range. These former data

could be either represented by predefined values or symbols. In

the context of DNNs weights may be quantized by clustering

processes, by lookup tables or using linear functions, all of them

with the aim of reducing information width of data. Originally,

most of the DNNs applied 32-bit floating point representation

for weight parameters, but in most cases this falls excessive. In

fact, 8-bit values can accelerate significantly inference process

without observable loss in accuracy. Different alternatives have

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 11-15

14

been adopted in recent years, and some of the most interesting

ones are described and analyzed below.

 In [24] they conduct extensive experiments using

incremental quantization on three applications: medical image

segmentation, image classification, and automatic speech

recognition. The main goal of incremental quantization is to

convert 32-bit-floating-point weights (W) into low precision

weights W’ either power of 2 or zero with minimum accuracy

loss. Each of W’ is chosen from Pl = {±2n1, . . . , ±2n2 }, here

n1 and n2 are two integer numbers determined by the max

absolute value of W of each layer and expected quantized bit-

width, and n2 ≤ n1. Experimental results in FCN for biomedical

image segmentation, CNN for image classification, and RNN

for automatic speech recognition, show that incremental

quantization can improve accuracy by 1%, 1.95%, and 4.23%

on the three applications, respectively, with 3.5x to 6.4x

memory reduction.

 An adaptive quantization method was introduced [25] to

enhance quantization results on MNIST, CIFAR-10 and SVHN

datasets, finding a unique, optimal precision for each network

parameter such that the increase in loss is minimized. Pruning

unnecessary parameters or quantizing them they showed DNN

model sizes can be reduced significantly without loss of

accuracy. The resulting models were significantly smaller than

state-of-the-art quantization technique.

 Following the trend of mixing pruning and quantization

techniques, in [26] they presented a training acceleration

framework able to speed up training process while compressing

DNN for mitigating transmission overhead. FL-PSQU is a

Federated Learning mechanism that is divided in three steps.

First, a one-shot pruning is done by the server to generate

general models for all clients and after quantizing it, it is

transferred to each client. Then, each client updates its model

and depending on its update’s significance it is transmitted to

the server or not, avoiding unnecessary communications by this

way.

 Other simpler approaches have been made that include

binary and ternary quantization. Thus, only two or three

possible values were assigned to each element of the

architecture, with a vast reduction in memory size and

computation effort. However, accuracy loss is not negligible in

these techniques due to the hard generalization of weights.

Binary Connect [27] used stochastic plus-minus quantization by

assigning +1 to positive valued weights and -1 to negative

valued ones with hard sigmoid probability σ(x) and 1- σ(x),

respectively. Similarly, in [28] they binarized all weights of

different architectures and afterward multiply with a scaling

factor for all the weights of a layer. In [29, 30] showed the

power of ternary quantization by including additional value (-

1, 0 and +1) compared to the binary case. Its implementation in

hardware must be efficient due to the fact that 0 value does not

actually participate in computations. Ternary Weight Networks

(TWN) adopts the l2-distance to find the scale and formats the

weights into -1, 0 and +1 with a threshold generated by an

assumption that the weighs are uniformly distributed such as in

[-a, a]. This resulted in up to 16x model compression with 3.6%

ResNet-18 top-1 accuracy loss on ILSVRC-2012.

 In some scenarios could be of special interest the conversion

of floating-point multiplication to bit-shift operations, such as

in case of FPGAs. Here, the constraint for weights for being

power of two, leverages training and inference effort and time.

This approach was proposed in [31] by quantizing the

representation of weights layer-by-layer. Likewise, Incremental

Network Quantization [32] replaces all weights with powers of

2 iteratively, preserving in each iteration some weights in full

precision and retraining them. After multiple iterations majority

of the weights are converted to power-of-two. The final

structure has weights from 2 to 5 bits with values near zero set

to zero. Results of group-wise iterative quantization show lower

error rates than a random power-of-two strategy.

IV. CONCLUSION AND FUTURE WORK

 Among different approaches that have been made so far in

the literature to reduce the dimension of the original network

size and optimize inference time, memory usage and

computational cost, the ones mentioned above are the most

interesting ones from our point of view. When transferring deep

networks usually trained on cloud to edge devices, it is of great

interest a reduction in network size to adapt these architectures

to the constraints of such devices. Thus, pruning original

network is undoubtedly an essential step to fit deep models in

resource constrained devices. Dynamic pruning offers the

possibility of removing unnecessary elements of the network at

inference time, thus, offering way of achieving the most

accurate reduction for the input data. In fact, these techniques

are computationally more expensive than the static ones, and

quite a bit complex. For some applications some approaches

will suit better than others and it is up to the final user the

election among them. However, achieving a computationally

effortless way of pruning networks dynamically would be an

interesting future research line.

 On the other hand, quantization techniques would not be

underestimated specially when transferring models to

microcontrollers that lack of operating systems. Specially when

those microcontrollers own FPGAs, a conversion from floating-

point multiplications to bit-shift operation could alleviate a

great computational cost and reduce runtime, as well. In the

majority of scenarios reducing the number of representative bits

to 8 is enough for avoiding a significant loss in terms of

accuracy while reducing vastly memory usage. Nonetheless,

some other approaches like binary quantization are too hard in

many cases leading to a excessive accuracy drop.

REFERENCES

[1] Y. LeCun, J.S. Denker, S.A. Solla, Optimal Brain Damage,
Advances in Neural Information Processing Systems (NIPS)
(1990) 598–605, https://doi.org/ 10.5555/109230.109298.
[2] Hassibi, B., et al. Optimal brain surgeon and general network
pruning. 10.1109/icnn.1993.298572. 1993.
[3] P. Molchanov et al. Pruning convolutional neural networks for
resource efficient transfer learning. Proceedings of International
Conference on Learning Representations (ICLR) 2017.
[4] C. Yu et al. Transfer channel pruning for compressing Deep
domain adaptation models. Int. J. Mach. Learn. Cybern, 10 (11)
(2019) 3129-3144.
[5] R. Muthukrishnan, R. Rohini. LASSO: A feature selection
technique in predictive modeling for machine learning, in: 2016
IEEE International Conference on Advances in Computer
Applications (ICACA), IEEE, 2016, pp. 18–20,
https://doi.org/10.1109/ICACA.2016.7887916.

https://doi.org/
https://doi.org/10.1109/ICACA.2016.7887916

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 4, No. 1, 2022, 11-15

15

[6] M. Yuan, Y. Lin. Model selection and estimation in regression
with grouped variables, Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 68 (2006) 49–67,
https://doi.org/10.1111/j.1467-9868.2005.00532.x,
http://doi.wiley.com/10.1111/j.1467-9868.2005.00532.x,.
[7] S.K. Yeom et al. Pruning by explaining: A novel criterion for
Deep neural network pruning. Pattern Recognition 115 (2021)
107899.
[8] B. O. Ayinde et al. Redundant feature pruning for acelerated
inference in deep neural neutworks. Neural Networks 118 (2019)
148-158.
[9] S. Swaminathan et al. Sparse low rank factorization for deep
neural network compression. Neurocomputing 398 (2020) 185-
196.
[10] H. Li et al. Pruning Filters for Efficient ConvNets, in:
International Conference on Learning Representations (ICLR),
2017, https://doi.org/10.1029/2009GL038531.
[11] J.H.H. Luo, J. Wu, W. Lin. ThiNet: A Filter Level Pruning Method
for Deep Neural Network Compression, in: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) 2017-Octob,
5068–5076, https://doi.org/10.1109/ICCV.2017.541.
[12] H. Hu et al. Network Trimming: A Data-Driven Neuron
Pruning Approach towards Efficient Deep Architectures. 2016.
ArXiv preprint http://arxiv.org/abs/1607.03250. .
[13] Y. Bengio. Estimating or Propagating Gradients Through
Stochastic Neurons. 2013. ArXiv preprint
http://arxiv.org/abs/1305.2982. .
[14] A. Davis, I. Arel. Low-Rank Approximations for Conditional
Feedforward Computation in Deep Neural Networks,
International Conference on Learning Representations.
[15] S. Leroux et al. The cascading neural network: building the
Internet of Smart Things. Knowl. Inf. Syst. 52 (2017) 791–814,
https://doi.org/10.1007/s10115-017-
1029-1, http://link.springer.com/10.1007/s10115-017-1029-1.
[16] T. Bolukbasi et al. Neural Networks for Efficient Inference, in:
Thirty-fourth International Conference on Machine Learning,
2017.
[17] A. Odena et al. Changing Model Behavior at Test-Time Using
Reinforcement Learning, in: International Conference on Learning
Representations Workshops (ICLRW), International Conference
on Learning Representations, ICLR. 2017.
http://arxiv.org/abs/1702.07780. .
[18] Z. Wu et al. BlockDrop: Dynamic Inference Paths in Residual
Networks, in: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, 2018, pp. 8817–8826,
https://doi.org/10.1109/CVPR.2018.00919.
[19] J. Lin et al. Runtime Neural Pruning. Advances in Neural
Information Processing Systems (NIPS). 2017. 2178–2188,
https://papers. nips.cc/paper/6813-runtime-neural-pruning.pdf.
[20] Y. Guo et al. Dynamic Network Surgery for Efficient DNNs.
30th Conference on Neural Information Processing Systems
(NIPS). 2016. Barcelona, Spain.
[21] X. Gao et al. Dynamic Channel Pruning: Feature Boosting and
Suppression, in: International Conference on Learning
Representations (ICLR), 2019, pp. 1–14,
http://arxiv.org/abs/1810.05331.
[22] Z. Chiliang et al. Accelerating Convolutional Neural Networks
with Dynamic Channel Pruning, in: 2019 Data Compression
Conference (DCC), IEEE, 2019, p. 563,
https://doi.org/10.1109/DCC.2019.00075.
[23] Y. Tang et al. Manifold Regularized Dynamic Network
Pruning. Computer Vision Foundation. 2021.
[24] W. Chen et al. Quantization of Deep Neural Networks for

Accurate Edge Computing. ACM Journal on Emerging

Technologies in Computing Systems, Vol. 17, No. 4, Article

54. 2021. https://doi.org/10.1145/3451211

[25] S. Khoram and J. Li. Adaptive Quantization of Neural

Networks, in: ICLR 2018.
[26] W. Xu et al. Accelerating Federated Learning for IoT in Big
Data Analytics With Pruning, Quantization and Selective Updating.
IEEE Access Vol. 9, 2021. 38457-38466.
[27] M. Courbariaux, et al. Binarized Neural Networks: Training
Deep Neural Networks with Weights and Activations Constrained
to +1 or -1. 2016. ArXiv preprint
https://github.com/MatthieuCourbariaux/
http://arxiv.org/abs/1602.02830.
[28] M. Rastegari et al. XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks, in: European Conference
on Computer Vision, Springer. 2016. pp. 525–542.
http://arxiv.org/abs/1603.05279
http://link.springer.com/10.1007/978-3-319-46493-0_32, DOI:
10.1007/978-3-319-46493-0_32. .
[29] F. Li et al. Ternary Weight Networks, in: Advances in
Neural Information Processing Systems (NIPS). 2016.
http://arxiv.org/abs/1605.04711.
[30] C. Leng et al. Extremely Low Bit Neural Network: Squeeze the
Last Bit Out with ADMM, in: The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18), 2018.
[31] Z. Lin et al. Neural Networks with Few Multiplications, in:
International Conference on Learning Representations (ICLR),
2016.
[32] A. Zhou et al. Incremental Network Quantization: Towards
Lossless CNNs with Low-Precision Weights, in: International
Conference on Learning Representations (ICLR), 2017.

http://doi.wiley.com/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1029/2009GL038531
http://link.springer.com/10.1007/s10115-017-1029-1
https://doi.org/10.1109/CVPR.2018.00919
http://arxiv.org/abs/1810.05331
https://doi.org/10.1109/DCC.2019.00075
https://doi.org/10.1145/3451211
https://github.com/MatthieuCourbariaux/
http://arxiv.org/abs/1603.05279

