
Position paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 14-19

14

Complexity Science for Evolving Software Ecosystems

T. V. Gopal

Department of Computer Science and Engineering

College of Engineering

Anna University

Chennai - 600 025, India

e-mail: gopal@annauniv.edu

Abstract—The innovation necessary to create economic
growth, drive societal change and address challenges
related to profitable growth relies on technologies that
are software – centric. The competitive environment
and market dynamics are totally different. This evolving
software ecosystem is still struggling with the growing
pains that the current economic conditions present both
as a catalyst for change and an opportunity to mature.
Software ecosystem is typically a set of projects and
products that co-evolve within the same organizational,
social and technical concerns. Economic principles
govern the choices more than the technology.
Promoting Human Talent in Software, Creating
Innovative Capacity and Shaping the future Internet and
Mobile platforms are the core challenges in seizing the
emerging opportunities. The production of systems
with specific demands on Reliability, Availability,
Maintenance, and Performance [RAMP] is one of the
greatest challenges of software engineering at all phases
of the development cycle. RAMP requirements for the
ecosystem are left unspecified, specified at a later stage,
or at best vaguely specified. Also, often times either it is
difficult or prohibitively expensive to test for some of
the RAMP specifications such as maintainability,
reliability, and high availability. The difficulties multiply
rapidly due to the absence of a clear set of rules, design
principle or practices for the RAMP specifications.
Acceptable Software Systems are not adequate. Even
wrong Software Works. The concepts of complexity
and chaos are becoming quite frequent in the evolving
software ecosystems. This paper positions the emerging
Complexity Science as a viable method.

Keywords—Complexity Science, Cybernetics,
Dynamical Systems, Software Aesthetics, Systems
Thinking, Web Intelligence

I. INTRODUCTION

“We have seen the enemy and he is us” aptly
summarizes the deliberations at the 1968 NATO
Conference on Software Engineering.

Some of the basic lessons learnt are given below:

1. The hardware environment of a software
system is not a constraint, but rather a
primary driving force of software
architecture and design.

2. At a high level, every software system can
be modeled with four types of design
elements: data structures and primitive
operations, external (hardware)
interfaces, system algorithms, and data
flow and sequence of actions.

3. None of the design languages and
modeling tools currently in use is
adequate for developing and representing
an entire software system.

“Engineering, medicine, business, architecture and
painting are concerned not with the necessary but
with the contingent - not with how things are but
with how they might be - in short, with design.”
 - Herbert Simon, 1996

The lack of first principles of software
development results in "the software crisis." The
NATO Conference suggested some initial
principles given below.

o Software artifacts are “machines”
 Deterministic, cause and effect,

formally describable
o People are potential “machines”

 After installation of proper
formalisms (education/training)

 With appropriate management
discipline

o Systems are Cartesian
o Model = machine

 Possible to define a formal syntax and
grammar capable of unambiguous
description of the implemented
machine.

Software began to be seen as Art, Science,
Discipline and Psychology. Over the past five
decades, Software Engineering which began with

mailto:gopal@annauniv.edu

Position paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 14-19

15

the above principles ushered in many more
concepts, principles, tools and techniques.

Some Characteristics of Large Software are given
below.

 High degree of Uncertainty due to the
dynamic nature of the parameters.

 Computing done by a Network of
Computers, Sensors and other Gadgets
with mobility whose behavior is difficult
to predict.

 It is usually not practical to test the
system under realistic conditions before
deploying.

 Human intervention in debugging and
modification while the Software is in use
is prohibitively expensive.

 Stiff deadlines and stringent Quality of
Service Parameters.

 There is a very high degree of
heterogeneity.

 Compelling need to make assumptions,
presumptions based on both “Imagination
& Information”.

The demand for increased variety of applications
resulted in the industry examine new channels for
supplying customers and new approaches to
designing applications based on their core
products. The dominant technology in many
modern technical products is software. Software
often provides the cohesiveness, control, and
functionality that enable products to deliver
solutions to customers. Software also provides the
flexibility needed to workaround limitations or
problems encountered when integrating other
items into the system. Software is easy to change
but extremely difficult to change correctly. The
industry took to models based on collaboration
between business competitors for developing
Software with Robustness, Productivity and
Niche Creation as the crux. Multi-stakeholders
became imperative. Developing Large Software
gave way to building services and a set of
interacting components. Systems thinking is
necessary for composing Adaptive Software
Systems.

System can be abstract or concrete; elementary
or composite; linear or nonlinear; simple or
complicated; complex or chaotic. Complex
systems are highly composite ones, built up from
very large numbers of mutually interacting

subsystems whose repeated interactions result in
rich, collective behavior that feeds back into the
behavior of the individual parts. Chaotic systems
can have very few interacting subsystems, but
they interact in such a way as to produce very
intricate dynamics. Software systems consist
primarily of a set of rules about behavior and also
include the mechanism necessary to follow those
rules as the system responds to states of the
world. The production of such software systems
with specific demands on Reliability, Availability,
Maintenance, and Performance [RAMP] is one of
the greatest challenges of software engineering at
all phases of the development cycle.

A complex adaptive system is an ensemble of
independent components that interact to create
an ecosystem. The interactions are defined by the
exchange of information and the actions of the
components are based on some system of internal
rules. These systems self-organize in nonlinear
ways to produce emergent results that exhibit
characteristics of both order and chaos. They
evolve over time.

“Process” and “Frameworks for Quality” greatly
enhanced the visibility of many core challenges.
However, the domain knowledge remains a
serious hurdle as software systems became
pervasive all too soon.

1.1 FRINGES OF SCIENCE

In the philosophy of science, the question of where
to properly draw a boundary between science and
non-science, when the objective actually is
objectivity, is called the demarcation problem.
Compounding this issue is that proponents of
some fringe theories use both proper scientific
evidence and outlandish claims to support their
arguments.

Software Development has been replete with the
usage of Metaphors to connote the context. The
following metaphors have found use in practice.

 Diaphor – poetry
– “what if … was like …”

 Epiphor – prose
– “an atom can be visualized as a
small planetary system with
electrons (planets) orbiting a
central nucleus (sun), the orbits
corresponding to …”

Position paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 14-19

16

 Lexical usage
– “Both the human brain and the
electronic computer are
instances of physical symbol
systems, hence the brain IS a kind
of computer.”

 Paraphor
– When a metaphor becomes a

paradigm
 Kuhn’s notion of

paradigm
 Lexical use of

metaphor
– Metaphor becomes part of

cultural perspective
– Values associated with

paraphor become the values of the
culture

 ‘Rational’ is good –
emotional is bad

 Control is essential –
chaos is evil

 Efficiency is a virtue
– waste is a vice

The process based on these approaches does not
manage bounds, directs, nudges and confines. It
relies on emergent order rather than an imposed
order. The components are not based on tasks and
are highly interactive and unpredictable.
Unfortunately, it needs a major error to bring out
the functioning of the software. Unacceptable risks
are not recognized. There are unnecessary
components developed and some required one
not developed. The success rate tends to be
dismal.

Cyber – Physical Systems [1,2,3] is a quest for a
consistently applied software systems engineering
approach to build and deliver the "new order" of
software-dependent systems based on Complexity
Science.

II. COMPLEXITY

Complex is a special attribute given to many kinds
of systems. It is used often, somewhat incorrectly,
as a synonym of difficult. Difficult is an object
which, with adequate computational power, can
be predictable deterministically or stochastically.
Complex is an object which is not predictable
because of logical impossibility or because its
predictability would require computational power

far beyond any physical feasibility. Complexity,
usually, is in reference to some observing system,
it is subjective, and thus it is observed irreducible
complexity.

Human systems are affected by several sources of
complexity and may be put into three classes
given below.

1. Systems belonging to the first class are not

predictable at all. This class of systems has
two types of complexity given below.

a. Logical Complexity: directly deriving

from self-reference, Gödel’s
incompleteness theorems

b. Relational Complexity: resulting in a
sort of indeterminacy principle occurring
in social systems.

2. Systems belonging to the second class are

predictable only through an infinite
computational capacity. This class of
systems has three types of complexity given
below.

a. Gnosiological Complexity: consists of

the variety of possible perceptions
b. Semiotic Complexity: represents the

infinite possible interpretations of signs
and facts

c. Chaotic Complexity: characterizes
phenomena of nonlinear dynamic
systems.

3. Systems belonging to the third class are

predictable only through a trans-
computational capacity. Computational
complexity that coincides with the
mathematical concept of intractability belongs
to this class. What appeared as complexity in
the computer program was to a considerable
extent complexity of the environment to
which the program was seeking to adapt its
behavior. Formal systems are merely
complicated.

Presently only a limited complexity of systems in
third class is studied and used in developing
evolving software systems. The “essential”
software engineering problems mentioned below
have strained the domain knowledge of Computer
Science and Engineering.

Position paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 14-19

17

o Changeability: adapting
themselves to unanticipated
changes

o Conformity: working out
everything the computer needs
to “know”

 Devoid of
intuition,
commonsense
reasoning

o Complexity: integrating multiple
already- complex programs

o Invisibility: communicating
their likely behavior to humans

“Web Intelligence” and related technologies

support the software systems through the

Information Dependent functionalities such as:

 Integration of Change
 Unclear Goals and Objectives
 Internal and External Communications
 Knowledge Management
 Working as Teams
 Learning Technology
 Work Processes and Flows
 Customer Needs
 Developing Managerial Skills
 Managing Competition and Market Forces

This paper proposes Software Aesthetics and
Cybernetics as two solutions for building the
Cyber – Physical Systems founded on the
Complexity Science.

III. SOFTWARE AESTHETICS

The Nature of Software [5] is as follows.

 Software is utilitarian.
 Software is mutable.
 Software is hidden.
 Software is beautiful.
 Software is complex.
 Software is insidious.
 Software is slavish.
 Software is logical.
 Software is abstract.
 Software is mediatory.
 Software is buggy.
 Software is transformable.
 Software is dictatorial.

 Software is pervasive.

There is no objective reality. All reality
considered is socially constructed. Hence Software
development is also a moral and social process
within the ambit of an exploration of the
constructed reality.

Aesthetics is an integral part of society, our
interaction with hardware, and of software
representation. Increasing pervasiveness of
computing results in a corresponding concern for
design aesthetics. All designs need strong
aesthetic foundations, and a requirement to
balance form and function. Software can be
represented within the virtuality continuum
facilitating effective, efficient and joyous
interaction.

The goal of software aesthetics is not simply to
create casual, ambient, peripheral, or otherwise
fun objects. Instead, the goal is to explore the full
range of interaction potential between software in
the periphery and in-depth software analysis.

There is a basic difference between engineering
problem solving and actually creating beyond
what the problem calls for. It is interesting that
people with design experience are able to see the
nuances of what makes something appropriate in
design. Software Aesthetics begins with the
subjective or qualitative aspects such as:

 Source code that is more clearly
organized

 More effective unit tests

 Better documentation

 More efficient

 More robust

 More usable user interface

 More attractive user interface

 More accessible

 More internationalized

 Presenting a unified whole

 Make users feel good

 Inspire confidence

These aspects need to be blended with the
Software Metrics that are quantitative and specific
to a chosen framework or a Maturity Model.

Position paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 14-19

18

Complexity Science specifies aspects of aesthetics
as:

 Cooperation

 Appropriate form

 System minimality - It is as small as it
can be.

 Component singularity

 Functional locality

 Readability

 Simplicity

Formal proofs need an Unconventional
Computing Model [6, 7].

IV. CYBERNETICS

Complexity Science warrants:

 Systems Thinking
 Creativity
 Open Systems
 Incrementalism
 Testing with External Intelligence
 Excellence
 Anticipating Needs
 Managing Resistance to Change
 Challenging Everything
 Risk Taking

A good formalism such as Cybernetics gives a
space for complexity science to define the Cyber –
Physical System in between the Comprising and
Comfort Zone of Experimentation and Chaos or
Anarchy. Unlike several engineering disciplines
that have clear and well grounded rules
specifications for experimentation, software
engineering makes “Grounding Practice” as
difficult as deciding on practice. Hence, formalism
such as Cybernetics is necessary to outline
pertinent verification and validation of evolving
software ecosystems.

Cybernetics is an interdisciplinary approach for
exploring regulatory systems - their structures,
constraints, and possibilities Cybernetics
includes the study of feedback, black boxes and
derived concepts such as communication and
control in living organisms, machines and
organizations including self-organization. It is
underpinned by the notion of circularity and
feedback between a system and its environment.

Cybernetics is not merely a thrust for optimization
on time and space. It is about the principle of
circularity that factors the human paradox to a
maximum possible extent.

The language of a deterministic world view
applied to computing gradually changes to
systemic view unpredictability of the interactions
among the large number of components. Figure 1
[3] below is the basis for the evolving software
ecosystem that functions on the emerging
complexity science.

Fig 1. Proposed Block Schematic for Software Behavior in

Cyber – Physical Systems

V. CONCLUSIONS

Chaos theory seeks an understanding of simple
systems that may change in a sudden, unexpected,
or irregular way. Complexity theory focuses on
complex systems involving numerous interacting
parts, which often give rise to unexpected order.
Complexity Science for evolving Software
Ecosystems is based on:

 Interconnected and interdependent
elements and dimensions

 Feedback processes promote and inhibit
change within systems

 System characteristics and behaviors
emerge from simple rules of interaction

 Nonlinearity

 Sensitivity to initial conditions

 Phase space – the ‘space of the possible’

Position paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 14-19

19

 Attractors, chaos and the ‘edge of chaos’

 Adaptive agents

 Self-organization

 Co-evolution

This paper presents Software Aesthetics and
Cybernetics as two solutions that make
Complexity Science viable for evolving software
ecosystems.

REFERENCES

1. Gopal T V, The Physics of Evolving
Complex Software Systems, International
Journal of Engineering Issues [IJEI], Vol.
2015, no. 1, pp. 33-39.

2. Gopal T V, Modeling Cyber - Physical
Systems for Engineering Complex
Software, International Journal of
Engineering Issues [IJEI], Vol. 2015, no. 2,
pp. 73-78.

3. Gopal T V, Engineering Software
Behavior in Cyber – Physical Systems,
International Journal of Engineering Issues
[IJEI], Vol. 2016, no. 1, pp. 44-52.

4. Gopal T V, Engineering Logic for Cyber –
Physical Systems, International Journal of
Engineering Issues, Vol. 2016, no. 3,pp.
112-120.

5. Gopal T.V. Beautiful code – circularity
and anti-foundation axiom, Int. J.
Computational Systems Engineering, Vol.
2, No. 3, 2016, pp.148–154.

6. Gopal T.V. Communicating and
Negotiating Proof Events in the Cyber –
Physical Systems, International Journal of
Advanced Research in Computer Science
and Software Engineering, Volume 7, Issue
3, March 2017, pp 236-242.

7. Reuben Hersh (Editor), 18
Unconventional Essays on the Nature of
Mathematics, Springer; 2006.

