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Abstract — In this study we propose how to design and 
develop brain computer interface for motor imagery (MI) 
where the training is based on action observation of a 
robot’s body parts and MI activities in terms of 
electroencephalogram (EEG) signals are featured and 
classified by Support Vector Machines. As the classification 
process is binary, most relevant features under study are 
based on statistical changes. The portable brain-aware 
device Emotiv EPOC is used to track and transmit EEG signals 
while the human is focusing and following positional 
directions, which are translated into navigation commands 
for the robot. The designed by us EEG-based portable Brain-
Computer Interface (BCI) measures and features the brain 
electrical activity for an observation/execution matching 
system. The electrodes in the parietal lobe, the area involved 
in transforming visual information into motor commands, 
together with “smart artifacts” induced in the raw EEG 
signals are used for classifying the type of the mental 
command.  

 
Keywords — Brain-computer interface, Motor imagery, 

Human-robot interaction, Pedagogical rehabilitation for 
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I. INTRODUCTION 

ur past experience in spatial orientation with children 
with Special Educational Needs (SEN) has shown that 
their basic skill is far below expected, which in turn 

means they need a different and task engagement 
approach for repetitions using their mind power and 
learning by imitation [1]. The Mirror Neuron System 
(MNS) [2] is believed to provide a basic mechanism for 
social behaviors such as action recognition and imitation. 
Thus, exploiting socially assistive robots for repetition by 
imitation we design brain-robotic scenarios how to create 
habits for orientation in space.  

All human behaviors involve motor functions, from 
walking to simple picking up a glass of water, where the 
brain has not only to contract the muscles but has to 
estimate, execute and plan other factors, such as the 
volume of the water, the shape of the glass, the trajectory, 
etc. In this study we used the electroencephalogram (EEG) 
signals correlated with all mental activities underlying the 
motor imagery (MI) to identify observation/execution 
matching. Motor imagery is defined as the cognitive 
process of imagining the movement of your own body part 
without actually moving that body part [3]. Since self-
cognition is difficult for children with SEN, to obtain 
consistency in mind training and, consequently, use of this 

training in terms of mental commands, we propose a new 
model for training – a Brain-Computer Interface (BCI) 
training by action observation for imagining the 
movements of the robot’s body part.  
Novel approaches in HCI include the use of information 
technologies and, specifically, the use of brain aware 
devices and Brain-Computer Interface which bypasses the 
conventional channels of communication, i.e. muscles, and 
provides direct communication and control between the 
human brain and the physical devices. BCI translates 
different patterns of brain activity into commands in real 
time [4]. Recently, portable, non-invasive and affordable 
EEG commercial devices for “gaming” or “well-being 
sustainability” have emerged [5]. They record the brain 
activity and measure the change in brain pulse voltage by 
electrodes on the scalp. We use low resolution devices 
“EPOC” or “INSIGHT” (Fig.1.) by EMOTIV bioinformatics 
company [6]. The electrode locations (INSIGHT ones are 
discriminated by red circles) are shown on Fig.1.a 
according to the 10-20 international EEG system ( Fig.1.b), 
recommended by the International Federation of Societies 
for Electro-encephalography and Clinical Neurophysiology 
[7]. Although both devices have low resolution and are 
with a few electrodes, they provide high-quality output 
neural signals [8]. More electrodes are positioned around 
the frontal and prefrontal lobes and they pick up signals 
from facial muscles and the eyes. The frontal sensors 
induce noise in EEG signals - however we also use these 
signals to classify which muscle groups are responsible for 
the artifacts. These so-called “smart artifacts” induced in 
pure EEG signals are diverted and classified to map the 
activation in different muscle groups and eye movement 
into events and we used them for detecting the motor 
imagery activities.  

 

 

Fig. 1. EMOTIV BCI technologies and electrode locations according to the 
10-20 international EEG system. 
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In the current study we have developed a BCI to be used in 
pedagogical scenarios, mediated by socially assistive robots. BCI 
measures and features in real time the brain electrical activity 
behind the mental commands for spatial orientation by motor 
imagery of the robot head, arms or legs. The robots are controlled 
by BCI and this integration of both technologies engages the 
spatial orientation of children with SEN by action observation 
and reinforces their attention. First, they have to create 
personally a mental command for each direction. Creating 
“Mental Commands” is a process to train the BCI system to 
recognize human background mental state from imagining the 
consequences of the command. In order to recruit and facilitate 
the imagination during the training phase, we bound the mental 
commands to different robot movements by analogy to the 
Emotiv EPOC Control Center [9] that supports animations of a 3D 
cube (or a car) during the training for PUSH, PULL, LIFT, DROP, 
LEFT, etc. This induces artifacts form eye movements and we use 
these “smart artifacts” complementary to the pure EEG signals 
placed on the temporal, parietal and occipital lobes. The BCI-
Robot framework, developed in the frame of the CybSPEED 
project [10], contains EMOTIV brain headset for tracking, 
processing and translating EEG data into mental commands, as it 
is illustrated on Fig.2.  

 

 

Fig. 2. BCI-Robot wireless framework for training and control  

A research protocol, describing how the motor imagery 
mental commands, can be tracked by physiological (neural 
data) observations and how data will be recorded and 
used, was submitted to the Ethics Committee for Scientific 
Research (ECSR) of the Institute of Robotics, Bulgarian 
Academy of Sciences (IR-BAS) and approved in October, 
2018.  

The paper is organized as follows: Section II presents 
related work about neuroscience implications for motor 
imagery and a review for signal processing techniques for 
motor imagery BCI. Section III presents the used materials 
and methods. Section IV presents the classification results 
and the conclusion follows. 

II. RELATED WORKS 

A. Neuroscience implications for the motor imagery 

A neuropsychological interpretation how the brain 
structures participate in mental simulation of motor 
behavior can be found in [11]. According to the anatomy of 
movement all human behaviors involve motor functions, 
from walking to simple picking up a glass of water, where 
the brain has to contract the muscles and their sequence 
for grasping the glass, however also has to estimate and 

execute the force needed to pick up the glass. Planning of 
other factors, like the volume of water and the material the 
glass is made from, also influence the brain calculations. 
Therefore, many anatomical regions need to be involved in 
motor tasks and the main regions of the motor cortex 
involved in the planning, control, and execution of 
voluntary movements are shown on Fig.3. The motor 
cortex is an area of the frontal lobe located in the posterior 
precentral gyrus immediately anterior to the central 
sulcus. 

The primary motor cortex (PMC) is a brain area located 
in the frontal lobe and its role is to generate brain impulses 
that control the execution of movement by activating 
skeletal muscles. Left hemisphere controls the right side of 
the body and vice versa. Other regions of the cortex 
involved in motor function are the premotor cortex, 
posterior parietal cortex and the supplementary motor 
area (SMA). The posterior parietal cortex is involved in 
transforming visual information into motor commands. 

 

  

Fig. 3. Main regions of the motor cortex (adapted from Wikipedia). 
https://en.wikipedia.org/wiki/Motor_cortex, accessed January, 2020.  

A ‘motor’ theory of social development and its relation 
to mirror neurons (MNs) is first proposed by Rizzolatti [2]. 
A set of F5 neurons ("mirror neurons", n = 92) became 
active both when one is performing a given action and 
when one is observing a similar action performed by an 
experimenter. Many research efforts have been involved in 
motor theories of cognitive and social development in 
humans by providing a potential neural mechanism 
underlying an action observation/execution matching 
system [12, 13, 14]. It has been proposed that this system 
plays a fundamental role in the development of complex 
social and cognitive behaviors such as imitation and action 
recognition.  

Children with ASD often exhibit early difficulties with 
action imitation possibly due to low-level sensory or 
motor impairments [12]. EEG activation displays 
differences in the pre-motor cortex and supplementary 
motor area between normal individuals and individuals 
with high and low traits of autism [14]. Children with ASD 
exhibit greater beta-ERD than their control peers but post-
movement beta rebound (PMBR) is absent [12]. Typically 
developing adolescents exhibited adult-like patterns of 
motor signals, e.g., event-related beta and mu 
desynchronization (ERD) before and during the movement 
and a post-movement beta rebound (PMBR) after the 
movement. In contrast, those with ASD exhibited stronger 
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beta and mu-ERD and reduced PMBR. Behavioral 
performance was similar between groups despite 
differences in motor cortical oscillations. 

  

B. Review for signal processing techniques for motor 
imagery brain computer interfaces  

 
Motor Imagery Brain Computer Interface provides a 

non-muscular channel for communication to those, who 
are suffering from neuronal disorders [15]. An example for 
a system with BCI for MI has been reported to be effective 
for stroke rehabilitation [3]. Authors in [15] discuss 
existing challenges in the domain of motor imagery brain-
computer interface and suggest possible research 
directions. The designing of an accurate and reliable MI-
BCI system requires the extraction of informative and 
discriminative features. Common Spatial Pattern (CSP) has 
been potent and is widely used in BCI for extracting 
features in motor imagery tasks. The classifiers translate 
these features into device commands. Many classification 
algorithms have been devised, among those Support 
Vector Machine (SVM) and Linear Discriminate Analysis 
(LDA) have been widely used. In recent studies deep 
neural networks for classification of motor imagery tasks 
are used. The research paper [15] provides a 
comprehensive review of dominant feature extraction 
methods and classification algorithms in BCI for motor 
imagery tasks. 

More studies, using EEG signals and features of motor 

imagery to identify different imagery activities can be 
found in [16], where the authors propose similar to our 
approach: Emotiv EPOC is used to extract EEG features 
about MI based on electroencephalogram signals. They use 
only AF3, AF4, FC5 and FC6 to capture EEG signals. A 
feature vector of EEG signals is transferred by a Wavelet 
transform. The four classified actions are analyzed through 
SVM algorithm with the Gauss kernel function. However, 
we consider that these 4 electrodes are not enough to 
identify neural activities underlying the MI by action 
observation, because more electrodes need to be analyzed 
in the parietal lobe, the area involved in transforming 
visual information into motor commands. We studied the 
electrodes positioned at the posterior parietal cortex and 
supplementary motor area during action observation and 
our feature extraction involves the neural activities 
underlying the “Observation–execution matching system”. 

III. MATERIALS AND METHODS 

A. Hypothesis and relevance of the materials and methods 

Our hypothesis is the following: 1) Spatial orientation of 
children with SEN will be increased by practicing 
navigation skills by imitation, mediated by socially 
assistive robots in an entertaining and playful 
environment. 2) A non-intrusive monitoring and 
assessment by BCI will provide EEG evidence for the 
presence of an “observation–execution matching system” 
in these children.  

 

Fig. 4. Some representative signals of the recording sequence : Rest-Right-Left- Right- Right- Right- Left- Left- Left- Right-Left 

 
 



Research paper                                              ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, 1-6 

4 

 

 
 

Materials: Assistive robots: humanoid robot NAO or 
non-humanoid Arduino-based robot, especially designed 
to not scare the kids. The intelligent sensors used for 
measuring the EEG correlated to motor imagery – the 
brain-aware headset EMOTIV EPOC. This headset is 
harmless wearable device complying with the 
requirements of the Low Voltage Directive 2006/95/EC, 
the EMC Directive 2004/108/EC, the R&TTE Directive 
1999/5/EC, and carries the CE and C-Tick marks 
accordingly [12]. 

B. Methods 

The experimental conditions for testing the proposed 
brain-robotic intervention scenarios are described in 
detail in a research protocol. During the training and 
testing that are involved in the classification and detection 
of the left / right eye imagery movements, the human 
made a set of left and right looks, and the corresponding 
EEG signal is recorded in training and testing sessions. 

To better understand the association between EEG 
activities and the eye movement responses, several factors 
have been intensively investigated, which are as follows: 
1) number of electrodes; 2) types and numbers of features; 3) 
types of classifier. 

After a series of recording and analysis sessions of the 
obtained signals, we noticed that MI and artifacts, induced 
from the movement of the eyes, did not affect all EEG data: 
Only AF3, AF4 and P7 signals (see Fig.4) are capable to 
provide reliable information for a classification task. 
 
B.1. Signal preprocessing and features extraction 

 
Since the recorded EEG data is very noisy, it was first 

preprocessed to make it smoother and to minimize the 
influence of the artifacts. A median filter of order 5 is then 
used to eliminate outlier values. The average value of each 
signal must then be eliminated in order to highlight only 
the ocular changes. 

Before extracting the left and right eye patterns, a 
separate recording of each pattern is required to allow its 
identification (Fig.5). The two signals are differentiable by 
their phase oppositions. 
 

 
 

« Left Look » « Right look » 
Fig. 5. Patterns representing left and right looks: Case of the P7 signal 

To reflect the real case of an interactive class between 
the robot and the students, the recording is asynchronous. 
Pattern detection and its extraction from the recorded signal are then 

achieved through a visual inspection and analysis. The 
choice of features aims to describe one or more 

characteristics of the eye movement activity and will be 
used by a learning algorithm to establish a model for the 
Left Look-Right Look classes. Since the classification 
process is binary, the most relevant features under study 
are essentially based on the temporal, statistical and 
power changes. They are calculated and organized as 
follows:  

TABLE I. LIST OF USED FEATURES 
Feature Designation Role 
mn Mean value measures the distribution of 

the pattern over time 
vr Variance  measure of  the dispersion of 

values 
sk Skewness the asymmetry measurement 

of the pattern 
kr Kurtosis measure of the "tailedness" 

of the pattern 
rms Root mean 

square 
quadratic mean 

apwr Average 
power 

the power related to the 
pattern  

 
Following this calculation approach, the original 

elements are neither redundant, nor correlated. This will 
allow a better understanding of the information, contained 
in each vector of functionalities, obtained without any 
additional processing. 
    For the recording sequence, shown in Fig. 4, the values 
of the calculated features for each pattern are represented 
in the following tables: 
 

TABLE 2. CALCULATED FEATURES FOR EACH RIGHT PATTERN: CASE OF THE 
RECORDING REPRESENTED BY THE SIGNAL P7 IN FIGURE 4. 

Feature
s\Patter
n 

Right1 Right2 Right3 Right4 Right5 

mn 0.004 0.004 0.004 0.004 0.004 
vr 0.00 0.00 0.00 0.00 0.00 
sk 0.12 -0.04 1.11 0.27 1.47 
kr 2.19 2.67 5.90 2.65 6.33 
rms 0.004 0.004 0.004 0.004 0.004 
apwr 1,7e-05 1,8e-05 1,6e-05 1,8e-05 1,8e-05 

 
TABLE 3. CALCULATED FEATURES FOR EACH LEFT PATTERN: CASE OF THE 

RECORDING REPRESENTED BY THE SIGNAL T8 IN FIGURE 4. 
 

Feature
s\Patte
rn 

Left1 Left 2 Left 3 Left 4 Left 5 

mn 0.004 0.004 0.004 0.004 0.004 
vr 0.00 0.00 0.00 0.00 0.00 
sk 0.68 -0.13 1.64 0.86 0.54 
kr 3.42 2.07 8.52 4.82 2.91 
rms 0.004 0.004 0.004 0.004 0.004 
apwr 1,8e-05 1,7e-05 1,8e-05 1,8e-05 1,8e-

05 
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According to the calculated values, the characteristics 
that have a large discriminatory effect are skewness and 
kurtosis.  
 
B.2. Classification algorithm 
 

The classifier used in this study is based on the 
supervised approach developed in the 1990s based on 
Vladimir Vapnik’s theoretical considerations on the 
development of a statistical theory of learning - Support 
Vector Machines (SVM) [17]. 

 

B.2.1. Basic Theory of SVM 

Given a training set of instance-label pairs (xi,yi); i = 1,…..l  
where xi Rn  and yi {1,-1}l . The SVM [17] are used to find 
a hyperplane  x+b=0 to separate the data with the 
maximum margin. They require the solution of the 
following optimization problem:  

             
 

 
     

Subject to   
  (   

  (  )   )                                          ( ) 
 

Using a soft-margin instead of a hard-margin, we obtain 
the primal problem for SVMs: 

           
 

 
      ∑  

 

   

                                            ( ) 

Subject to 
  (   

  (  )   )                          ( ) 
where: 

- *  + are slack variables which allow for penalized 
constraint violation through the penalty function 
 ( ) defined by Equation 14: 

  ( )  ∑                                     ( )

 

   

 

- C is the parameter controlling the trade-off between 
a large margin and less constrained violation 

-  ( ) represents the mapping from the input space 
to the feature space. However researchers prefer to 
use a kernel function K(.,.) given by the following 

expression:  (     )   (  )
  (  ). Practically, the 

most commonly used kernel functions are: 

 Linear:  (     )    
 
   

 Polynomial:  (     )   (   
 
    )

         

 Exponential Radial basis function (ERBF): 
 (     )     (  ‖     ‖ 

 )       

 Sigmoid:  (     )       (   
 
    ) 

Here,      and d are kernel parameters. Furthermore, a 
practical use and implementation of the SVM classifier is 
presented in [19].  

 
B.2.2. Optimization of the classifier 

We set the classifier parameters based on binary 
classification. Beyond the fundamental principle of 

parsimony in research, the SVM approach leaves, in 
practice, a number of options and settings to the user such 
as: the choice of the tuning parameter, and the choice of 
kernel type. 
 

The kernel function: 

The adopted kernel is the Exponential Radial Basis 
Function (ERBF) as it represents the best way to follow the 
non-linear decision surfaces. 

For maximum robustness, instead of the basic equation, 
we use a structure that takes into account the number of 
learning elements [18]. The kernel function expression is 
given by (5). 
 

 (   )     ( 
‖   ‖ 

   
)                         ( ) 

- m is the dimension of the observation vectors;  

- σ represents the width of the Gaussian function. It is 

the main parameter that affects the complexity of 

decision surfaces. Optimization of the classifier 

involves determination of that parameter in order to 

maximize the performance and the feasible value is 

σ=0.5 [18]. 
 

Controlling parameters 

As already mentioned, this coefficient controls the 
tradeoff between maximizing the margin of a class’s 
separation and minimization of classification errors on the 
training set. It's a balancing parameter to set a priori, in 
order to make floppy the margin’s SVM. The best practical 
results are usually obtained [19] using an adaptive value 
‘‘Cdat’’of that penalty parameter based on the number of 
« m » learning elements. Thus, Cdat is obtained according to 
the equation (6) wherein the kernel function  (     ) is 
defined by Equation (5). 
 

     
 

 
 
∑  (     )
 
   

                                               ( ) 

 

IV. CLASSIFICATION RESULTS  

The recordings were made for several people and a 
database was built for training and testing of the 
classification model. In this last phase, a cross validation 
method was applied. With this approach, the generality of 
the established classification systems is tested and verified 
when the system has trained the characteristics of the 
studied EEG signals. 

The procedure consists of starting the supervised 
learning process with the first database and later 
launching the test phase with the second and vice versa. 
The result of this test is given as a confusion matrix in the 
table below. 
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TABLE V. AVERAGE SVM BINARY CLASSIFICATION RESULTS (Left look vs. Right look) 

 

SVM classifier : « ERBF 
Kernel », σ=0.5 and C=Cdat  

Estimated Patterns 

Left Right 

Real 
Patterns 

Left 65% 35% 

Right 38% 62% 

 
 

Although the overall result is correct, a binary 
classification based on supervised learning often leads to 
better precision: two reasons are possible: 
1) The signal had to be cleaned well before the 
classification process. 
2) Among the characteristics chosen, some calculated 
values have a low class separation power. 

However, the use of the SVM classifier and its correct 
configuration made it possible to clearly distinguish the 
patterns under study. 

In the future we intend to apply the proposed model for 
training and controlling social robots by mental commands 
correlated with the attention and emotional knowledge of 
children with special educational needs, in order to extend 
our past experiments [20]. We plan to test another brain-
aware device – the Open BCI [21]. 

CONCLUSION 

A new EEG-based brain-computer interface has been 
proposed for controlling body parts of a humanoid robot 
NAO or non-humanoid Arduino-based robot by motor 
imagery. To obtain consistency in BCI training and 
consequently use of personalized mental commands we 
propose a model for BCI training by action observation. 
The experimental results show that the BCI classification 
system for motor imagery that extracts features and 
translate those features into navigation robot commands is 
general enough to establish and classify other mental 
commands based on EEG signals. 
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