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Abstract: Autism is a broad neurodevelopmental disorder affecting the memory, behavior, emotion, 

learning ability, and communication of an individual. The computer aided diagnosis (CAD) of Autism 

Spectrum Disorder (ASD) has been gaining interest in the scientific community in the recent years, aiming 

to achieve early detection that may allow to apply therapeutic or palliative treatments from an early age. 

In this paper we gather some of the approaches that have been reported in the recent literature. Some 

approaches deal with behavioral characterizations, while the majority of approaches deal with the analysis 

of neural activity and brain connectivity in some way or another. Most recent studies are focused on the 

detection of brain functional connectivity anomalies using specific signals such as electroencephalographic 

(EEG) recordings or functional magnetic resonance imaging (fMRI). The publication of large public 

repositories of data is boosting research in this topic, promising to find robust biomarkers and 

discrimination models for robust CAD systems. 
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1. INTRODUCTION 1

Autism is a type of neurodevelopmental disorder

affecting the memory, behavior, emotion, learning ability, 

and communication of an individual. Autism spectrum 

disorder (ASD), aka autism spectrum condition (ASC), is 

a chronic inhabilitating cognitive impairment that takes a 

wide variety of forms, hence the use of the term 

“spectrum”, and has a high prevalence in the general 

population, with a neat imbalance in distribution towards 

the male gender. A normative study on brain cortical 

structure modeled by a probabilistic predictive model 

concluded that there is some indication that sexual-related 

characteristics of the brain are highly correlated with ASD 

[6].  

Computer aided diagnosis (CAD) aims to help the 

clinical practitioner to achieve early and accurate 

diagnosis of ASC in order to try to apply early treatments 

hoping to improve the child’s condition in some way [11, 

25, 26, 28, 30, 35]. In this paper we will not discuss the 

clinical standard protocols and practices applied to obtain 

a diagnosis.  

A search in Pubmed using the terms “computer aided 

diagnosis autism” resulted in 285 references. The peak 

interest seems to be in year 2012, but a steady flow of 

papers is appearing since then dealing with the problem of 

devising CAD tools for ASD diagnosis coming from a 

diversity of bio-information sources. Though there have 

been attempts to build CAD rule based expert systems [23] 

relying only on qualitative information, such as parents 

questionnaires, most of the current works are directed 
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towards the identification of biomarkers that may support 

the application of machine learning approaches to build 

the CAD system, such as the selection of microarray 

expression data [13, 18, 19], or the detection of specific 

metabolites that are related to ASD [22]. Imaging 

information, such as magnetic resonance imaging (MRI) 

of diverse modalities has a big potential to provide such 

biomarkers. For instance, structural MRI has provided 

evidence of atypical brain lateralization of subject with 

ASC [10] in a cohort of 67 ASC subjects and 69 

neurotypical subjects with matching IQ and relevant 

personal characteristics. Most of the CAD or biomarker 

identification approaches are developed on small local 

datasets, but recent trends aim to use multi-center 

information in order to achieve more robust classification 

results [15, 33], such as the Autism Brain Imaging Data 

Exchange (ABIDE) repository (http://fcon_1000.projects. 

nitrc.org/indi/abide/index.html), which contains 

information from more than one thousand ASD patients 

and healthy controls, or the UK Medical Research Council 

Autism Imaging Multicentre Study (MRC AIMS). It has 

been argued, however, that inter-site variability seriously 

impedes the data analysis [24]. After removing inter-

center variability predictive classification results are 

reported close to random noise, enforcing the conclusion 

that more specific differential diagnostic tools are needed 

because of the actual heterogeneity of the brain structures. 

The contents of the paper are as follow: Section 2 

presents CAD behavior measurement based approaches. 

Section 3 presents some approaches using EEG data. 

Section 4 presents approaches based on MRI data, which 
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is the most exploited approach nowadays. Finally, Section 

5 gives some concluding remarks.  

2 BEHAVIOR MEASUREMENT BASED 

APPROACHES. 

Some approaches use behavioral information 

measured by computer vision or another sensing 

technique. For instance, in [20] authors propose the 

measurement using computer vision of the imitation 

response of ASC children versus neurotypical children to 

discriminate them. Another non intrusive approach to 

discriminate ASC children uses the inertial information of 

a smart tablet [4]. The authors find definitive patterns of 

motion that are compatible with the ASC clinical 

characterization, larger and faster motions, stronger forces 

at contact, with more distal use of space. Another 

approach uses the Kinect V2 sensor in order to measure 

the motions of the subjects and try to detect stereotypical 

motor reactions which are the hallmark of autism in 

clinical diagnosis processes. The experiments reported 

with motion captured from professional actors promised 

that this detection can be achieved with great probability 

[16].  

3 EEG BASED DETECTION. 

It has been established empirically the possibility to 

discriminate between neurotypical children and ASD 

children on the basis of carefully crafted analysis of their 

brain activity recorded by Electroencephalographic (EEG) 

sensors [5]. The analysis requires sophisticated time series 

analysis, including features computed from non-linear 

chaotic time series analysis and time frequency 

decomposition. The fractal dimension together with the 

entropy are reported in this review as discriminant 

features. A computational pipeline consisting in the 

application of a wavelet decomposition, following by the 

computation of entropy features from each EEG sub-band 

and finally an artificial neural network (ANN) classifier 

has been tested with good classification results [8]. 

Another approach, uses the self-organizing map (SOM) 

for feature extraction of EEG signal, and tests a number of 

conventional classifiers, achieving a high accuracy in 

classification of ASD versus neurotypical children [12]. 

However, such works are removed from the clinical 

practice because they do not provide adequate explanation 

relating the discrimination results to the mechanisms 

underlying them. They are in a sense blind methods, or 

black boxes. Clinically oriented studies try to come up 

with explanations that involve anomalies in the 

functionality of the brain, such as effects of brain 

connectivity. A recent systematic review on connectivity 

analysis based on EEG and magnetoencephalography 

(MEG) [29] has found systematic long-range 

underconnectivity in ASD, while analysis of local 

connectivity does not provide definitive conclusions.  

4 MRI BASED DETECTION. 

Another track for research into the existence of 

anomalies in brain functionality connectivity is the use of 

various modalities of magnetic resonance imaging (MRI), 

namely structural (T1-weighted) MRI, resting state 

functional MRI (rs-fMRI) and diffusion weighted imaging 

(DWI), and magnetic resonance spectroscopy (MRS) are 

the most relevant modalities to identify ASD biomarkers 

[21]. Biomarker identification aims to detect brain 

regions, connections or biochemical signatures that show 

significant differences between ASD and neurotypical 

populations. CAD goes one step further, it produces a 

decision on the diagnosis that can be used by the clinical 

practitioner with some confidence. CAD systems require 

sophisticated machine learning tools, such as multiview 

multitask ensembles of classifiers [33]. Image biomarker 

findings are quite diverse [21]. Structural MRI findings 

using voxel based differences are sometimes contradictory 

and inconsistent, and heavily dependent on the technique 

used and the age of subjects, though some increase in gray 

matter and white matter  volume was consistently 

reported, as well as corpus callosum decrease in volume. 

Morphological differences in thalamus and striatum have 

been also reported using structural features [31]. Increased 

cortical thickness was reported for ASD in the range 

between 6 years and adolescence [17], with differences 

decreasing towards adulthood. Other authors report 

significant differences in temporoparietal regions [38]. 

One of the questions raised is whether the differences in 

measurements found in older children may be due to the 

actual ASD effects or the years of social dysfunction. 

Hence, the current preferences of researchers on 

biomarkers is to do the observations in very early ages, 

even toddlers. Tractography analysis based on fractional 

anisotropy coefficients extracted from DWI data have 

shown consistent degradation of main neural tracts, 

pointing to a degradation of brain connectivity. The 

analysis of functional connectivity based on rs-fMRI data 

has found also many incoherent or contradictory results 

heavily dependent on the actual seed regions selected for 

connectivity computation. The accepted conclusion so far 

is that there is some form of compensation between 

reduced long-range connectivity and increased short-

range connectivity. The functional parcellation of the 

insula allowed to find differences of insula functional 

connectivity between ASD and neurotypical subjects [37]. 

The spatial shifting of resting state networks, such as 

the default mode network, has been also tested as a 

biomarker for ASD [27]. The parcellation of the brain 

activity into intrinsic connectivity networks allowed to 

assess their spatial variability and its discriminant power, 

ASD showed greater spatial variability. These results help 

to harmonize the contradictory findings of 

underconnectivity and overconnectivity in several studies 

[2]. Increase in intrasubject variability brain connectivity 

in time, due to diverse factors such as caffeine intake 

between sessions, has been found a potential biomarker 

for ASD [9]. Connectivity of the thalamus cortex has been 

studied by rs-fMRI brain networks and anatomical 

connectivity computed by diffusion weighted imaging 

tractography [1] finding diverse patterns of 

underconnectivity. The study of brain connectivity in 

toddlers comparing ASD with other developmental 

disorders has bee reported using DWI and streamlined 

tractography [7]. Over an anatomical parcellation of the 

brain, the neural pathways between them were extracted, 

and the connectivity strength between brain regions was 

estimated. The results point to overconnectivity in ASD 
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toddlers versus other developmental disorders. On other 

effort, the connectivity between the cerebellum and the 

temporoparietal junction was analyzed in detail using both 

independent component analysis and seed based 

connectivity analysis [14] finding perturbed input to the 

termporal-parietal regions from the cerebelar areas.  

Many CAD systems proceed by computing first some 

kind of features which are then input to some conventional 

classifier, such as linear support vector machines (SVM). 

A tensor based approach to estimate connectivity in rs-

fMRI is proposed in [39] that it is able to extract both the 

connectome representation and the dynamic functional 

connectivity for each subject finding discriminant effects 

on the putamen connectivity for ASD subjects. Fine 

temporal analysis of the rs-fMRI time series, by clustering 

them into short time intervals that may be shared between 

brain regions, allows more precise classification [34, 40]. 

On the other hand, structural features of brain cortex were 

used by random forest classifier to produce reliable 

predictions in toddlers [36].  

Deep learning is having also a definitive impact in the 

recent attempts to construct CAD systems. For instance, 

Deep Belief Networks have been reported [3] to achieve 

ASD children discrimination fusing structural MRI 

imaging data and rs-fMRI data. Another approach [32] 

uses sparse autoencoders to extract feature filters from 

structural MRI, which are applied to the 3D structural MRI 

by a convolution neural network for feature extraction. A 

linear decomposition by independent component analysis 

is applied to extract rs-fMRI connectivity features after 

appropriate signal bandpass. Structural and functional 

features are finally entered to a linear support vector 

machine (SVM) classifier. However, deep learning 

approaches are blind, in the sense that no biological 

information is provided by CAD system, so there is no 

explanation that may lead the clinical practice to find 

treatments.  

5 CONCLUDING REMARKS 

Computer aided diagnosis (CAD) systems for ASD are 

currently a focus of research, because they may provide 

early detection leading to improved treatment. CAD 

systems provide the clinical practitioner with a 

recommendation of the diagnosis, which may (or may not) 

be based on accepted biomarkers. Blind CAD systems are 

not easily accepted because the medical staff requires 

understanding the recommendation from a causality point 

of view. Therefore, future efforts must emphasize 

explainability in order to get acceptance in the medical 

community.  
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